SEARCH

SEARCH BY CITATION

References

  • 1
    Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, Tobias PS, Ulevitch RJ. Structure and function of lipopolysaccharide binding protein. Science 1990; 249: 142931.
  • 2
    Hailman E, Lichenstein HS, Wurfel MM et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 1994; 179: 26977.DOI: 10.1084/jem.179.1.269
  • 3
    Tobias PS, Soldau K, Gegner JA, Mintz D, Ulevitch RJ. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 1995; 270: 104828.DOI: 10.1074/jbc.270.18.10482
  • 4
    Ferrero E, Goyert SM. Nucleotide sequence of the gene encoding the monocyte differentiation antigen, CD14. Nucleic Acids Res 1988; 16: 4173.
  • 5
    Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol 1988; 141: 54752.
  • 6
    Simmons DL, Tan S, Tenen DG, Nicholson-Weller A, Seed B. Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood 1989; 73: 2849.
  • 7
    Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249: 14313.
  • 8
    Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in the Tlr4 gene. Science 1998; 282: 20858.DOI: 10.1126/science.282.5396.2085
  • 9
    Muroi M, Ohnishi T, Tanamoto K. Regions of the mouse CD14 molecule required for toll-like receptor 2- and 4-mediated activation of NF-kappa B. J Biol Chem 2002; 277: 423729.DOI: 10.1074/jbc.M205966200
  • 10
    Viriyakosol S, Kirkland TN. The N-terminal half of membrane CD14 is a functional cellular lipopolysaccharide receptor. Infect Immun 1996; 64: 6536.
  • 11
    Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 1996; 4: 40714.DOI: 10.1016/S1074-7613(00)80254-X
  • 12
    Haziot A, Lin XY, Zhang F, Goyert SM. The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent. J Immunol 1998; 160: 25702.
  • 13
    Schromm AB, Lien E, Henneke P et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell line: a point mutation in a conserved region of MD-2 abolishes endotoxin-induced signaling. J Exp Med 2001; 194: 7988.DOI: 10.1084/jem.194.1.79
  • 14
    Visintin A, Mazzoni A, Spitzer JA, Segal DM. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci USA 2001; 98: 1215661.DOI: 10.1073/pnas.211445098
  • 15
    Visintin A, Latz E, Monks BG, Espevik T, Golenbock DT. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J Biol Chem 2003; 278: 4831320.DOI: 10.1074/jbc.M306802200
  • 16
    Nagai Y, Akashi S, Nagafuku M et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002; 3: 667.
  • 17
    Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J Immunol 1999; 162: 374952.
  • 18
    Akashi S, Saitoh S, Wakabayashi Y et al. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med 2003; 198: 103542.DOI: 10.1084/jem.20031076
  • 19
    Thieblemont N, Thieringer R, Wright SD. Innate immune recognition of bacterial lipopolysaccharide: dependence on interactions with membrane lipids and endocytic movement. Immunity 1998; 8: 7717.DOI: 10.1016/S1074-7613(00)80582-8
  • 20
    Latz E, Visintin A, Lien E, Fitzgerald KA, Monks BG, Kurt-Jones EA, Golenbock DT, Espevik T. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 2002; 277: 4783443.DOI: 10.1074/jbc.M207873200
  • 21
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 3947.DOI: 10.1038/41131
  • 22
    Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF III. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001; 276: 1022933.DOI: 10.1074/jbc.M100099200
  • 23
    Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1: 398401.DOI: 10.1038/80833
  • 24
    Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K, Nishijima M. Mouse toll-like receptor 4–MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J Biol Chem 2000; 275: 22514.DOI: 10.1074/jbc.275.4.2251
  • 25
    Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature 1991; 351: 3556.
  • 26
    Dunne A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003; 171: re3
  • 27
    Hirschfeld M, Weis JJ, Toshchakov V et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001; 69: 147782.DOI: 10.1128/IAI.69.3.1477-1482.2001
  • 28
    Werts C, Tapping RI, Mathison JC, et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2001; 2: 34652.DOI: 10.1038/86354
  • 29
    Netea MG, Van Deuren M, Kullberg BJ, Cavaillon JM, Van der Meer JW. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol 2002; 23: 1359.DOI: 10.1016/S1471-4906(01)02169-X
  • 30
    Triantafilou M, Brandenburg K, Kusumoto S, Fukase K, Mackie A, Seydel U, Triantafilou K. Combinational clustering of receptors following stimulation by bacterial products determines LPS responses. Biochem J 2004; 381: 527–36.
  • 31
    Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A. Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci USA 1999; 96: 564550.
  • 32
    Triantafilou K, Triantafilou M, Dedrick RL. A CD14-independent LPS receptor cluster. Nat Immunol 2001; 2: 33845.DOI: 10.1038/86342
  • 33
    Heine H, El-Samalouti VT, Notzel C et al. CD55/decay accelerating factor is part of the lipopolysaccharide-induced receptor complex. Eur J Immunol 2003; 33: 1399408.DOI: 10.1002/eji.200323381
  • 34
    Burns K, Martinon F, Esslinger C et al. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998; 273: 122039.
  • 35
    Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997; 7: 83747.DOI: 10.1016/S1074-7613(00)80402-1
  • 36
    Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X. Poly (dI x dC)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem 2003; 278: 167139.DOI: 10.1074/jbc.M300562200
  • 37
    Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J Exp Med 2000; 192: 595600.DOI: 10.1084/jem.192.4.595
  • 38
    Schnare M, Holt AC, Takeda K, Akira S, Medzhitov R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol 2000; 10: 113942.DOI: 10.1016/S0960-9822(00)00700-4
  • 39
    Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 14350.DOI: 10.1016/S1074-7613(00)80596-8
  • 40
    Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001; 413: 7883.DOI: 10.1038/35092578
  • 41
    Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 2003; 4: 1617.DOI: 10.1038/ni886
  • 42
    Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002; 420: 329.DOI: 10.1038/nature01180
  • 43
    Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2001; 2: 83541.DOI: 10.1038/ni0901-835
  • 44
    Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002; 420: 3249.DOI: 10.1038/nature01182
  • 45
    Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 2000; 408: 1115.DOI: 10.1038/35040600
  • 46
    Dunne A, Ejdeback M, Ludidi PL, O'Neill LA, Gay NJ. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 2003; 278: 4144351.DOI: 10.1074/jbc.M301742200
  • 47
    Ronni T, Agarwal V, Haykinson M, Haberland ME, Cheng G, Smale ST. Common interaction surfaces of the Toll-like receptor 4 cytoplasmic domain stimulate multiple nuclear targets. Mol Cell Biol 2003; 23: 254355.DOI: 10.1128/MCB.23.7.2543-2555.2003
  • 48
    Heguy A, Baldari CT, Macchia G, Telford JL, Melli M. Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila toll protein are essential for IL-1R signal transduction. J Biol Chem 1992; 267: 26059.
  • 49
    Kuno K, Okamoto S, Hirose K, Murakami S, Matsushima K. Structure and function of the intracellular portion of the mouse interleukin 1 receptor (type I). Determining the essential region for transducing signals to activate the interleukin 8 gene. J Biol Chem 1993; 268: 135108.
  • 50
    Cao Z, Henzel WJ, Gao X. IRAK: a kinase associated with the interleukin-1 receptor. Science 1996; 271: 112831.
  • 51
    Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem 1999; 274: 1940310.DOI: 10.1074/jbc.274.27.19403
  • 52
    Kobayashi K, Hernandez LD, Galan JE, Janeway CA, Medzhitov R Jr, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110: 191202.
  • 53
    Li S, Strelow A, Fontana EJ, Wesche H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA 2002; 99: 556772.DOI: 10.1073/pnas.082100399
  • 54
    Suzuki N, Suzuki S, Duncan GS et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 2002; 416: 7506.DOI: 10.1038/nature736
  • 55
    Qin J, Jiang Z, Qian Y, Casanova JL, Li X. IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J Biol Chem 2004; 279: 2674853.DOI: 10.1074/jbc.M400785200
  • 56
    Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. TRAF6 is a signal transducer for interleukin-1. Nature 1996; 383: 4436.
  • 57
    Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 2526.DOI: 10.1038/18465
  • 58
    Shirakabe K, Yamaguchi K, Shibuya H et al. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem 1997; 272: 81414.DOI: 10.1074/jbc.272.13.8141
  • 59
    Yamaguchi K, Shirakabe K, Shibuya H et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270: 200812.
  • 60
    Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 2003; 4: 1617.DOI: 10.1038/ni886
  • 61
    Yamamoto M, Sato S, Hemmi H et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 2003; 301: 6403.DOI: 10.1126/science.1087262
  • 62
    Fitzgerald KA, Rowe DC, Barnes BJ et al. LPS-TLR4 signaling to IRF-3/7 and NF-KB involves the Toll adapters TRAM and TRIF. J Exp Med 2003; 198: 104355.DOI: 10.1084/jem.20031023
  • 63
    Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T. TICACM-2: a bridging adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 2003; 278: 49751.DOI: 10.1074/jbc.M305820200
  • 64
    Yamamoto M, Sato S, Hemmi H et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 2003; 4: 114450.DOI: 10.1038/ni986
  • 65
    Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 2003; 171: 4304.
  • 66
    Fitzgerald KA, McWhirter SM, Faia KL et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4: 4916.DOI: 10.1038/ni921
  • 67
    Wietek C, Miggin SM, Jefferies CA, O'Neill LA. Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-kappa. J Biol Chem 2003; 278: 5092331.DOI: 10.1074/jbc.M308135200
  • 68
    Schafer SL, Lin R, Moore PA, Hiscott J, Pitha PM. Regulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem 1998; 273: 271420.DOI: 10.1074/jbc.273.5.2714
  • 69
    Kim T, Kim TY, Lee WG, Yim J, Kim TK. Signaling pathways to the assembly of an interferon-beta enhanceosome. Chemical genetic studies with a small molecule. J Biol Chem 2000; 275: 169107.DOI: 10.1074/jbc.M000524200
  • 70
    Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1998; 1: 50718.DOI: 10.1016/S1097-2765(00)80051-9
  • 71
    Mink M, Fogelgren B, Olszewski K, Maroy P, Csiszar K. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics 2001; 74: 23444.DOI: 10.1006/geno.2001.6548
  • 72
    Burns K, Clatworthy J, Martin L et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2000; 2: 34651.DOI: 10.1038/35014038
  • 73
    Jefferies CA, Doyle S, Brunner C et al. Bruton's tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 2003; 278: 2625864.DOI: 10.1074/jbc.M301484200
  • 74
    De Weers M, Brouns GS, Hinshelwood S, Kinnon C, Schuurman RK, Hendriks RW, Borst J. B-cell antigen receptor stimulation activates the human Bruton's tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem 1994; 269: 2385760.
  • 75
    Vihinen M, Mattsson PT, Smith CI. BTK, the tyrosine kinase affected in X-linked agammaglobulinemia. Front Biosci 1997; 2: d27.
  • 76
    Horwood NJ, Mahon T, McDaid JP, Campbell J, Mano H, Brennan FM, Webster D, Foxwell BM. Bruton's tyrosine kinase is required for lipopolysaccharide-induced tumor necrosis factor alpha production. J Exp Med 2003; 197: 160311.DOI: 10.1084/jem.20021845
  • 77
    Wald D, Qin J, Zhao Z et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003; 4: 9207.DOI: 10.1038/ni968
  • 78
    Thomassen E, Renshaw BR, Sims JE. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine 1999; 11: 38999.
  • 79
    Brint EK, Xu D, Liu H, Dunne A, McKenzie AN, O'Neill LA, Liew FY. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol 2004; 5: 3739.
  • 80
    Hardy MP, O'Neill LA. The murine Irak2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem 2004; 279: 27699708.DOI: 10.1074/jbc.M403068200
  • 81
    Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression. FEBS Lett 2003; 548: 1037.DOI: 10.1016/S0014-5793(03)00747-6
  • 82
    Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 2003; 197: 2638.
  • 83
    Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 2004; 5: 495502.
  • 84
    Haziot A, Ferrero E, Lin XY, Stewart CL, Goyert SM. CD14-deficient mice are exquisitely insensitive to the effects of LPS. Prog Clin Biol Res 1995; 392: 34951.
  • 85
    Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999; 189: 61525.DOI: 10.1084/jem.189.4.615
  • 86
    Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999; 11: 11522.DOI: 10.1016/S1074-7613(00)80086-2
  • 87
    Swantek JL, Tsen MF, Cobb MH, Thomas JA. IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. J Immunol 2000; 164: 43016.
  • 88
    Castrillo A, Pennington DJ, Otto F, Parker PJ, Owen MJ, Bosca L. Protein kinase Cepsilon is required for macrophage activation and defense against bacterial infection. J Exp Med 2001; 194: 123142.
  • 89
    Karaghiosoff M, Steinborn R, Kovarik P et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 2003; 4: 4717.DOI: 10.1038/ni910
  • 90
    Vadiveloo PK, Christopoulos H, Novak U, Kola I, Hertzog PJ, Hamilton JA. Type I interferons mediate the lipopolysaccharide induction of macrophage cyclin D2. J Interferon Cytokine Res 2000; 20: 3559.DOI: 10.1089/107999000312289
  • 91
    Boyle WA III, Parvathaneni LS, Bourlier V, Sauter C, Laubach VE, Cobb JP. iNOS gene expression modulates microvascular responsiveness in endotoxin-challenged mice. Circ Res 2000; 87: E1824.
  • 92
    Swiergiel AH, Dunn AJ. Distinct roles for cyclooxygenases 1 and 2 in interleukin-1-induced behavioral changes. J Pharmacol Exp Ther 2002; 302: 10316.DOI: 10.1124/jpet.102.036640
  • 93
    Bopst M, Garcia I, Guler R et al. Differential effects of TNF and LTalpha in the host defense against M. bovis BCG. Eur J Immunol 2001; 31: 193543.
  • 94
    Moreland JG, Fuhrman RM, Wohlford-Lenane CL, Quinn TJ, Benda E, Pruessner JA, Schwartz DA. TNF-alpha and IL-1 beta are not essential to the inflammatory response in LPS-induced airway disease. Am J Physiol Lung Cell Mol Physiol 2001; 280: L17380.
  • 95
    Schilling D, Thomas K, Nixdorff K, Vogel SN, Fenton MJ. Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. J Immunol 2002; 169: 587480.
  • 96
    Garlanda C, Riva F, Polentarutti N et al. Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc Natl Acad Sci USA 2004; 101: 35226.DOI: 10.1073/pnas.0308680101
  • 97
    Kinjyo I, Hanada T, Inagaki-Ohara K et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002; 17: 58391.DOI: 10.1016/S1074-7613(02)00446-6
  • 98
    Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001; 412: 34651.DOI: 10.1038/35085597