SEARCH

SEARCH BY CITATION

References

  • 1
    Jobin C, Sartor RB. The IκB/NF-κB system: a key determinant of mucosal inflammation and protection. Am J Physiol 2000; 278: C45162.
  • 2
    Haller D, Jobin C. Interaction between resident luminal bacteria and the host: Can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr 2004; 38: 12336.
  • 3
    Kraehenbuhl JP, Corbett M. Immunology. Keeping the gut microflora at bay. Science 2004; 303: 16245.DOI: 10.1126/science.1096222
  • 4
    Neish AS. The gut microflora and intestinal epithelial cells: a continuing dialogue. Microbes Infect 2002; 4: 30917.DOI: 10.1016/S1286-4579(02)01543-5
  • 5
    Rogler G, Andus T. Cytokines in inflammatory bowel disease. World J Surg 1998; 22: 3829.DOI: 10.1007/s002689900401
  • 6
    Fagarasan S, Honjo T. Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 2003; 3: 6372.DOI: 10.1038/nri982
  • 7
    Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M. Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut 2000; 47: 58994.
  • 8
    Stagg AJ, Hart AL, Knight SC, Kamm MA. The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. Gut 2003; 52: 15229.DOI: 10.1136/gut.52.10.1522
  • 9
    Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003; 3: 52133.
  • 10
    Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000; 164: 96672.
  • 11
    Haller D, Russo MP, Sartor RB, Jobin C. IKKβ and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-κB activation in both primary and intestinal epithelial cell lines. J Biol Chem 2002; 277: 3816878.DOI: 10.1074/jbc.M205737200
  • 12
    Beutler B, Du Hoebe KX, Ulevitch RJ. How we detect microbes and respond to them. the Toll-like receptors and their transducers. J Leukoc Biol 2003; 74: 47985.
  • 13
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 33576.DOI: 10.1146/annurev.immunol.21.120601.141126
  • 14
    Akira S. Toll-like receptor signaling. J Biol Chem 2003; 278: 381058.DOI: 10.1074/jbc.R300028200
  • 15
    Karin M. The beginning of the end. IκB kinase (IKK) and NF-κB activation. J Biol Chem 1999; 274: 2733942.DOI: 10.1074/jbc.274.39.27339
  • 16
    Li Q, Verma IM. NF-κB regulation in the immune system. Nat Rev Immunol 2002; 2: 72534.DOI: 10.1038/nri910
  • 17
    Jobin C, Sartor RB. NF-κB signaling proteins as therapeutic targets for inflammatory bowel diseases. Inflamm Bowel Dis 2000; 6: 20613.
  • 18
    Bent S, Ko R. Commonly used herbal medicines in the United States: a review. Am J Med 2004; 116: 47885.
  • 19
    Woolf AD. Herbal remedies and children: do they work? Are they harmful? Pediatrics 2003; 112: 2406.
  • 20
    De Smet PA. Herbal remedies. N Engl J Med 2002; 347: 204656.DOI: 10.1056/NEJMra020398
  • 21
    Gohil K, Packer L. Bioflavonoid-rich botanical extracts show antioxidant and gene regulatory activity. Ann N Y Acad Sci 2002; 957: 707.
  • 22
    Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 2001; 90: 15777.
  • 23
    Ross JA, Kasum CM. Dietary flavonoids. bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002; 22: 1934.DOI: 10.1146/annurev.nutr.22.111401.144957
  • 24
    Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB. Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor IκB kinase activity. J Immunol 1999; 163: 347483.
  • 25
    Sugimoto K, Hanai H, Tozawa K, Aoshi T, Uchijima M, Nagata T, Koide Y. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 2002; 123: 191222.DOI: 10.1053/gast.2002.37050
  • 26
    Xagorari A, Papapetropoulos A, Mauromatis A, Economou M, Fotsis T, Roussos C. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther 2001; 296: 1817.
  • 27
    Kim SH, Shin KJ, Kim D et al. Luteolin inhibits the nuclear factor-κB transcriptional activity in Rat-1 fibroblasts. Biochem Pharmacol 2003; 66: 95563.DOI: 10.1016/S0006-2952(03)00465-9
  • 28
    Kotanidou A, Xagorari A, Bagli E, Kitsanta P, Fotsis T, Papapetropoulos A, Roussos C. Luteolin reduces lipopolysaccharide-induced lethal toxicity and expression of proinflammatory molecules in mice. Am J Respir Crit Care Med 2002; 165: 81823.
  • 29
    Jobin C, Haskill S, Mayer L, Panja A, Sartor RB. Evidence for an altered regulation of IκBα degradation in human colonic epithelial cells. J Immunol 1997; 158: 22634.
  • 30
    Magness ST, Jijon H, Van Houten N, Sharpless NE. Brenner DA, Jobin C. In vivo pattern of lipopolysaccharide and anti-CD-3-induced NF-κB activation using a novel gene targeted enhanced GFP reporter gene mouse. J Immunol 2004; 173: 156170.
  • 31
    Russo MP, Schwabe RF, Sartor RB, Jobin C. NF-κB-inducing kinase restores defective IκB kinase activity and NF-κB signaling in intestinal epithelial cells. Cell Signal 2004; 16: 74150.DOI: 10.1016/j.cellsig.2003.11.007
  • 32
    Haller D, Holt L, Kim SC, Schwabe RF, Sartor RB, Jobin C. Transforming growth factor-beta 1 inhibits non-pathogenic Gram negative bacteria-induced NF-κB recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J Biol Chem 2003; 278: 2385160.DOI: 10.1074/jbc.M300075200
  • 33
    Jobin C, Hellerbrand C, Licato LL. Brenner DA, Sartor RB. NF-κB mediates cytokine-induced expression of ICAM-1 in IEC-6 cells, a process blocked by proteasome inhibitors. Gut 1998; 42: 77987.
  • 34
    Wang D, Baldwin AS Jr. Activation of nuclear factor-κB-dependent transcription by tumor necrosis factor-α is mediated through phosphorylation of relA/p65 on serine 529. J Biol Chem 1998; 273: 294116.DOI: 10.1074/jbc.273.45.29411
  • 35
    Mayo MW, Madrid LV, Westerheide SD, Jones DR, Yuan XJ, Baldwin AS Jr, Whang YE. PTEN blocks tumor necrosis factor-induced NF-κB-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J Biol Chem 2002; 277: 1111625.DOI: 10.1074/jbc.M108670200
  • 36
    Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-κB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 1998; 273: 328590.DOI: 10.1074/jbc.273.6.3285
  • 37
    Rahman A, Anwar KN, Uddin S, Xu NYeRD, Platanias LC, Malik AB. Protein kinase C-δ regulates thrombin-induced ICAM-1 gene expression in endothelial cells via activation of p38 mitogen-activated protein kinase. Mol Cell Biol 2001; 21: 555465.DOI: 10.1128/MCB.21.16.5554-5565.2001
  • 38
    Yamin T-T, Miller DK. The interleukin-1 receptor-associated kinase is degraded by the proteasomes following its phosphorylation. J Biol Chem 1997; 272: 215407.DOI: 10.1074/jbc.272.34.21540
  • 39
    Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998; 66: 522431.
  • 40
    Spencer DM, Veldman GM, Banerjee S, Willis J, Levine AD. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology 2002; 122: 94105.
  • 41
    Hoentjen F, Sartor RB, Ozaki M, Jobin C. STAT3 regulates NF-κB recruitment to the IL-12p40 promoter in dendritic cells. Blood 2005; 105:68996.
  • 42
    Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest 1997; 100: 610.
  • 43
    Kono H, Rusyn I, Yin M et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 2000; 106: 86772.
  • 44
    True AL, Rahman A, Malik AB. Activation of NF-κB induced by H2O2 and TNF-α and its effects on ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 2000; 279: L30211.
  • 45
    Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J 1991; 10: 224758.
  • 46
    Li N, Karin M. Is NF-κB the sensor of oxidative stress? FASEB J 1999; 13: 113743.
  • 47
    Bowie A, O'Neill LA. Oxidative stress and nuclear factor-κB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 2000; 59: 1323.
  • 48
    Van Den Berg R, Haenen GR, Van Den Berg H, Bast A. Transcription factor NF-κB as a potential biomarker for oxidative stress. Br J Nutr 2001; 86 (Suppl. 1):1217.
  • 49
    Hayakawa M, Miyashita H, Sakamoto I, Kitagawa M, Tanaka H, Yasuda H, Karin M, Kikugawa K. Evidence that reactive oxygen species do not mediate NF-κB activation. EMBO J 2003; 22: 335666.DOI: 10.1093/emboj/cdg332
  • 50
    Chen CC, Chow MP, Huang WC, Lin YC, Chang YJ. Flavonoids inhibit tumor necrosis factor-α-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure–activity relationships. Mol Pharmacol 2004; 66: 68393.
  • 51
    Burke JR. Targeting IκB kinase for the treatment of inflammatory and other disorders. Curr Opin Drug Discov Devel 2003; 6: 7208.
  • 52
    Carter RS, Geyer BC, Xie M, Acevedo-Suarez CA, Ballard DW. Persistent activation of NF-κB by the tax transforming protein involves chronic phosphorylation of IκB kinase subunits IKKβ and IKKγ. J Biol Chem 2001; 276: 244458.
  • 53
    May MJ, D'Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 2000; 289: 15504.DOI: 10.1126/science.289.5484.1550
  • 54
    Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998; 1: 66171.DOI: 10.1016/S1097-2765(00)80066-0
  • 55
    Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999; 274: 303536.DOI: 10.1074/jbc.274.43.30353
  • 56
    Prajapati S, Gaynor RB. Regulation of IκB kinase (IKK) γ/NEMO function by IKKβ-mediated phosphorylation. J Biol Chem 2002; 277: 243319.DOI: 10.1074/jbc.M201393200
  • 57
    Sakurai H, Suzuki S, Kawasaki N et al. Tumor necrosis factor-α-induced IKK phosphorylation of NF-κB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 2003; 278: 3691623.DOI: 10.1074/jbc.M301598200
  • 58
    Yang F, Tang E, Guan K, Wang CY. IKKβ plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J Immunol 2003; 170: 56305.
  • 59
    Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20: 495549.DOI: 10.1146/annurev.immunol.20.100301.064816
  • 60
    Balk RA. Pathogenesis and management of multiple organ dysfunction or failure in severe sepsis and septic shock. Crit Care Clin 2000; 16: 33752.