SEARCH

SEARCH BY CITATION

References

  • 1
    Mackie R, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999; 69: 1035S1045S.
  • 2
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine (cites personal communication from Joshua Lederberg). Science 2001; 291: 8814.DOI: 10.1126/science.291.5505.881
  • 3
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 2004; 118: 22941.
  • 4
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101: 1571823.
  • 5
    Macpherson AJ, Martinic MM, Harris N. The functions of mucosal T cells in containing the indigenous flora of the intestine. Cell Mol Life Sci 2003; 59: 208896.
  • 6
    Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303: 16625.DOI: 10.1126/science.1091334
  • 7
    Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr 1999; 69: 1046S1051S.
  • 8
    Crabbe PA, Nash DR, Bazin H, Eyssen H, Heremans JF. Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Laboratory Invest 1970; 22: 44857.
  • 9
    Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infection Immunity 1995; 63: 390413.
  • 10
    Helgeland L, Vaage JT, Rolstad B, Halstensen TS, Midtvedt T, Brandtzaeg P. Regional phenotypic specialization of intraepithelial lymphocytes in the rat intestine does not depend on microbial colonization. Scand J Immunol 1997; 46: 34957.DOI: 10.1046/j.1365-3083.1997.d01-133.x
  • 11
    Helgeland L, Vaage JT, Rolstad B, Midtvedt T, Brandtzaeg P. Microbial colonization influences composition and T-cell receptor V beta repertoire of intraepithelial lymphocytes in rat intestine. Immunology 1996; 89: 494501.DOI: 10.1046/j.1365-2567.1996.d01-783.x
  • 12
    Yamanaka T, Helgeland L, Farstad IN, Fukushima H, Midtvedt T, Brandtzaeg P. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches. J Immunol 2003; 170: 81622.
  • 13
    Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 2002; 99: 154515.DOI: 10.1073/pnas.202604299
  • 14
    Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science 2001; 292: 11158.DOI: 10.1126/science.1058709
  • 15
    Gowans JL, Knight EJ. The route of recirculation of lymphocytes in the rat. Proc Roy Soc B 1964; 159: 25782.
  • 16
    Husband AJ, Gowans JL. The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J Exp Med 1978; 148: 114660.DOI: 10.1084/jem.148.5.1146
  • 17
    Pierce NF, Gowans JL. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J Exp Med 1975; 142: 155063.DOI: 10.1084/jem.142.6.1550
  • 18
    Craig SW, Cebra JJ. Peyer's patches: an enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 1971; 134: 188200.
  • 19
    Guy-Grand D, Griscelli C, Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J Exp Med 1978; 148: 166177.DOI: 10.1084/jem.148.6.1661
  • 20
    Guy-Grand D, Vassalli P. Gut injury in mouse graft-versus-host reaction. Study of its occurrence and mechanisms. J Clin Invest 1986; 77: 158495.
  • 21
    Arstila T, Arstila TP, Calbo S, Selz F, Malassis-Seris M, Vassalli P, Kourilsky P, Guy-Grand D. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J Exp Med 2000; 191: 82334.DOI: 10.1084/jem.191.5.823
  • 22
    Coffman RL, Lebman DA, Shrader B. Transforming growth factor β specifically enhances IgA production by lipopolysaccharide stimulated murine B lymphocytes. J Exp Med 1989; 170: 103944.
  • 23
    Kunimoto DY, Harriman GR, Strober W. Regulation of IgA differentiation in CH12LX B cells by lymphokines: IL-4 induces membrane IgM-positive CH12LX cells to express membrane IgA and IL-5 induces membrane IgA-positive CH12LX cells to secrete IgA. J Immunol 1988; 141: 71320.
  • 24
    Kunimoto DY, Nordan RP, Strober W. IL-6 is a potent cofactor of IL-1 in IgM synthesis and of IL-5 in IgA synthesis. J Immunol 1989; 143: 22305.
  • 25
    Beagley KW, Eldridge JH, Lee F et al. Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J Exp Med 1989; 169: 213348.
  • 26
    Beagley KW, Eldridge JH, Kiyono H, Everson MP, Koopman WJ, Honjo T, McGhee JR. Recombinant murine IL-5 induces high rate IgA synthesis in cycling IgA-positive Peyer's patch B cells. J Immunol 1988; 141: 203542.
  • 27
    Castigli E, Scott S, Dedeoglu F, Bryce P, Jabara H, Bhan AK, Mizoguchi E, Geha RS. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci U S A 2004; 101: 39038.
  • 28
    Elson CO, Ealding W. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 1984; 133: 28927.
  • 29
    Elson CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 1984; 132: 273641.
  • 30
    Lycke N, Holmgren J. Intestinal mucosal memory and presence of memory cells in lamina propria and Peyer's patches in mice 2 years after oral immunization with cholera toxin. Scand J Immunol 1986; 23: 6116.
  • 31
    Lycke N, Eriksen L, Holmgren J. Protection against cholera toxin after oral immunisation is thymus dependent and associated with intestinal production of neutralising IgA antitoxin. Scand J Immunol 1987; 25: 4139.
  • 32
    Lycke N, Erlandsson L, Ekman L, Schon K, Leanderson T. Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol 1999; 163: 9139.
  • 33
    Hörnquist CE, Ekman L, Grdic KD, Schön K, Lycke NY. Paradoxical IgA immunity in CD4-deficient mice. J Immunol 1995; 155: 287787.
  • 34
    Vajdy M, Kosco-Vilbois MH, Kopf M, Kohler G, Lycke N. Impaired mucosal immune responses in interleukin 4-targeted mice. J Exp Med 1995; 181: 4153.DOI: 10.1084/jem.181.1.41
  • 35
    Gardby E, Lane P, Lycke NY. Requirements for B7-CD28 costimulation in mucosal IgA responses: paradoxes observed in CTLA4-H gamma 1 transgenic mice. J Immunol 1998; 161: 4959.
  • 36
    Weinstein PD, Cebra JJ. The preference for switching to IgA expression by Peyer's patch germinal centre B cells is likely due to the influence of their microenvironment. J Immunol 1991; 147: 412635.
  • 37
    Weinstein PD, Schweitzer PA, Cebra-Thomas A, Cebra JJ. Molecular genetic features reflecting the preference for isotype switching to IgA expression by Peyer's patch germinal center B cells. Int Immunol 1991; 3: 125363.
  • 38
    Schrader CE, Cebra JJ. Dendritic cell dependent expression of IgA by clones in T/B microcultures. Adv Exp Med Biol 1993; 329: 5964.
  • 39
    Fayette J, Dubois B, Vandenabeele S et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J Exp Med 1997; 185: 190918.DOI: 10.1084/jem.185.11.1909
  • 40
    Litinskiy MB, Nardelli B, Hilbert DM, Schaffer A, Casali P, Cerutti A. Antigen presenting cells induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002; 3: 8229.DOI: 10.1038/ni829
  • 41
    Castigli E, Wilson SA, Scott S et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 2005; 201: 359.
  • 42
    Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288: 22226.DOI: 10.1126/science.288.5474.2222
  • 43
    Snider DP, Liang H, Switzer I, Underdown BJ. IgA production in MHC class II-deficient mice is primarily a function of B-1a cells. Int Immunol 1999; 11: 1918.DOI: 10.1093/intimm/11.2.191
  • 44
    Franco MA, Greenberg HB. Immunity to rotavirus infection in mice. J Infect Dis 1999; 179: S4669.DOI: 10.1086/314805
  • 45
    Franco M, Greenberg HB. Immunity to rotavirus in T cell deficient mice. Virology 1997; 238: 16979.DOI: 10.1006/viro.1997.8843
  • 46
    Jain A, Ma CA, Lopez-Granados E et al. Specific NEMO mutations impair CD40-mediated c-Rel activation and B cell terminal differentiation. J Clin Invest 2004; 114: 1593602.DOI: 10.1172/JCI200421345
  • 47
    Atkinson TP, Smith CA, Hsu YM et al. Leukocyte transfusion-associated granulocyte responses in a patient with X-linked hyper-IgM syndrome. J Clin Immunol 1998; 18: 4309.DOI: 10.1023/A:1023286807853
  • 48
    Stoel M, Jiang H-Q, Van Diemen CC et al. Restricted IgA repertoire in both B-1 and B-2 cell-derived gut plasmablasts. J Immunol 2005; 174: 104654.
  • 49
    Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL, Carroll MC, Rajewsky K. B cell receptor signal strength determines B cell fate. Nat Immunol 2004; 5: 31727.
  • 50
    Holtmeier W, Hennemann A, Caspary WF. IgA and IgM V (H) repertoires in human colon: evidence for clonally expanded B cells that are widely disseminated. Gastroenterology 2000; 119: 125366.
  • 51
    Dunn-Walters DK, Boursier L, Spencer J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur J Immunol 1997; 27: 295964.
  • 52
    Martin F, Kearney JF. B1 cells: similarities and differences with other B cell subsets. Curr Opin Immunol 2001; 13: 195201.DOI: 10.1016/S0952-7915(00)00204-1
  • 53
    Lam KP, Rajewsky K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development. J Exp Med 1999; 190: 4718.DOI: 10.1084/jem.190.4.471
  • 54
    Kroese FGM, Butcher EC, Stall AM, Lalor PA, Adams S, Herzenberg LA. Many of the IgA producing plasma cells in the murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol 1988; 1: 7584.
  • 55
    Kroese FG, Ammerlaan WA, Kantor AB. Evidence that intestinal IgA plasma cells in mu, kappa transgenic mice are derived from B-1 (Ly-1 B) cells. Int Immunol 1993; 5: 131727.
  • 56
    Thurnheer MC, Zuercher AW, Cebra JJ, Bos NA. B1 cells contribute to serum igM but not to intestinal IgA production in gnotobiotic Ig allotype chimeric mice. J Immunol 2003; 170: 456471.
  • 57
    Antin JH, Emerson SG, Martin P, Gadol N, Ault KA. Leu-1+ (CD5+) B cells. A major lymphoid subpopulation in human fetal spleen: phenotypic and functional studies. J Immunol 1986; 136: 50510.
  • 58
    Casali P, Notkins AL. CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol Today 1989; 10: 3648.
  • 59
    Hardy RR, Hayakawa K, Shimizu M, Yamasaki K, Kishimoto T. Rheumatoid factor secretion from human Leu-1+ B cells. Science 1987; 236: 813.
  • 60
    Brandtzaeg P, Pabst R. Let's go mucosal: communication on slippery ground. Trends Immunol 2004; 25: 5707.
  • 61
    Cazac BB, Roes J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 2000; 13: 44351.
  • 62
    Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 2001; 413: 63943.DOI: 10.1038/35098100
  • 63
    Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 2002; 298: 14247.DOI: 10.1126/science.1077336
  • 64
    Bos NA, Bun JC, Popma SH, Cebra ER, Deenen GJ, Van Der Cammen MJ, Kroese FG, Cebra JJ. Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria. Infect Immun 1996; 64: 61623.
  • 65
    Macpherson AJ, Lamarre A, McCoy K, Dougan G, Harriman G, Hengartner H, Zinkernagel R. IgA B cell and IgA antibody production in the absence of mu and delta heavy chain expression early in B cell ontongeny. Nat Immunol 2001; 2: 62531.DOI: 10.1038/89775
  • 66
    Bouvet JP, Fischetti VA. Diversity of antibody-mediated immunity at the mucosal barrier. Infect Immun 1999; 67: 268791.
  • 67
    Snider DP, Marshall JS, Perdue MH, Liang H. Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J Immunol 1994; 153: 64757.
  • 68
    Hasan M, Polic B, Bralic M, Jonjic S, Rajewsky K. Incomplete block of B cell development and immunoglobulin production in mice carrying the muMT mutation on the BALB/c background. Eur J Immunol 2002; 32: 346371.DOI: 10.1002/1521-4141(200212)32:12<3463::AID-IMMU3463>3.0.CO;2-B
  • 69
    Brandtzaeg P. Mucosal and glandular distribution of immunoglobulin components. differential localization of free and bound SC in secretory epithelial cells. J Immunol 1974; 112: 15539.
  • 70
    Brandtzaeg P. Polymeric IgA is complexed with secretory component (SC) on the surface of human intestinal epithelial cells. Scand J Immunol 1978; 8: 3952.
  • 71
    Johansen FE, Brandtzaeg P. Transcriptional regulation of the mucosal IgA system. Trends Immunol 2004; 25: 1507.DOI: 10.1016/j.it.2004.01.001
  • 72
    Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, Betsholtz C, Brandtzaeg P. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 1999; 190: 91522.DOI: 10.1084/jem.190.7.915
  • 73
    Roy MJ, Varvayanis M. Development of dome epithelium in gut-associated lymphoid tissues. association of IgA with M cells. Cell Tissue Res 1987; 248: 64551.DOI: 10.1007/BF00216495
  • 74
    Weltzin R, Lucia-Jandris P, Michetti P, Fields BN, Kraehenbuhl JP, Neutra MR. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J Cell Biol 1989; 108: 167385.DOI: 10.1083/jcb.108.5.1673
  • 75
    Mantis NJ, Cheung MC, Chintalacharuvu KR, Rey J, Corthesy B, Neutra MR. Selective adherence of IgA to murine Peyer's patch M cells: evidence for a novel IgA receptor. J Immunol 2002; 169: 184451.
  • 76
    Macpherson AJ, Uhr T 2004 Compartmentalisation of mucosal immune responses to commensal intestinal bacteria. In: WeinerHL, MayerL, StroberW eds. Oral Tolerance: Mechanisms and Applications. New York: Annals New York Academy of Science, 2004; 1029: 3643.
  • 77
    Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 1999; 10: 2938.DOI: 10.1016/S1074-7613(00)80004-7
  • 78
    Sansonetti P. Phagocytosis of bacterial pathogens: implications in the host response. Semin Immunol 2001; 13: 38190.DOI: 10.1006/smim.2001.0335
  • 79
    Owens WE, Berg RD. Bacterial translocation from the gastrointestinal tract of athymic (nu/nu) mice. Infect Immun 1980; 27: 4617.
  • 80
    Berg LJ, Pullen AM, Fazekas de St Groth B, Mathis D, Benoist C, Davis MM. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell 1989; 58: 103546.
  • 81
    Gautreaux MD, Gelder FB, Deitch EA, Berg RD. Adoptive transfer of T lymphocytes to T-cell-depleted mice inhibits Escherichia coli translocation from the gastrointestinal tract. Infect Immun 1995; 63: 382734.
  • 82
    Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996; 4: 4305.
  • 83
    Bachmann MF, Kalinke U, Althage A et al. The role of antibody concentration and avidity in antiviral protection. Science 1997; 276: 20247.
  • 84
    Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 1996; 38: 36575.
  • 85
    Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2: 3617.DOI: 10.1038/86373
  • 86
    Niess JH, Brand S, Gu X et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005; 307: 2548.DOI: 10.1126/science.1102901
  • 87
    Kramer DR, Cebra JJ. Early appearance of ‘natural’ mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J Immunol 1995; 154: 205162.
  • 88
    Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003; 4: 26973.DOI: 10.1038/ni888
  • 89
    Brandtzaeg P, Nilssen DE. Mucosal aspects of primary B cell deficiency and gastrointestinal infections. Curr Opin Gastroenterol 1995; 11: 53240.
  • 90
    Lehrer RI, Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 2002; 9: 1822.DOI: 10.1097/00062752-200201000-00004
  • 91
    Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002; 14: 96102.DOI: 10.1016/S0952-7915(01)00303-X