SEARCH

SEARCH BY CITATION

References

  • 1
    Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196:25465.
  • 2
    Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 2004; 40:16607.
  • 3
    Klimp AH, De Vries EGE, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 2002; 44:14361.
  • 4
    Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4(+) T-helper and a T-killer cell. Nature 1998; 393:4748.
  • 5
    French RR, Chan HTC, Tutt AL, Glennie MJ. CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 1999; 5:54853.
  • 6
    Turner JG, Rakhmilevich AL, Burdelya C et al. Anti-CD40 antibody induces antitumor and antimetastatic effects: The role of NK cells. J Immunol 2001; 166:8994.
  • 7
    Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL. CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol 2005; 174:601322.
  • 8
    Imaizumi K, Kawabe T, Ichiyama S et al. Enhancement of tumoricidal activity of alveolar macrophages via CD40–CD40 ligand interaction. Am J Physiol–Lung Cellular Mol Physiol 1999; 277:L49L57.
  • 9
    Bingaman AW, Pearson TC, Larsen CP. The role of CD40L in T cell-dependent nitric oxide production by murine macrophages. Transpl Immunol 2000; 8:195202.
  • 10
    DeKruyff RH, Gieni RS, Umetsu DT. Antigen-driven but not lipopolysaccharide-driven IL-12 production in macrophages requires triggering of CD40. J Immunol 1997; 158:35966.
  • 11
    Kiener PA, Morandavis P, Rankin BM, Wahl AF, Aruffo A, Hollenbaugh D. Stimulation of Cd40 with purified soluble Gp39 induces proinflammatory responses in human monocytes. J Immunol 1995; 155:491725.
  • 12
    Netea MG, Van der Meer JWM, Verschueren I, Kullberg BJ. CD40/CD40 ligand interactions in the host defense against disseminated Candida albicans infection: the role of macrophage-derived nitric oxide. Eur J Immunol 2002; 32:145563.
  • 13
    Burger D, Molnarfi N, Gruaz L, Dayer JM. Differential induction of IL-1 beta and TNF by CD40 ligand or cellular contact with stimulated T cells depends on the maturation stage of human monocytes. J Immunol 2004; 173:12927.
  • 14
    Klostergaard J, Leroux ME, Hung MC. Cellular models of macrophage tumoricidal effector mechanisms in vitro – characterization of cytolytic responses to tumor-necrosis-factor and nitric-oxide pathways in vitro. J Immunol 1991; 147:28028.
  • 15
    Higuchi M, Higashi N, Taki H, Osawa T. Cytolytic mechanisms of activated macrophages – tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol 1990; 144:142531.
  • 16
    Cui S, Reichner JS, Mateo RB, Albina JE. Activated murine macrophages induce apoptosis in tumor cells through nitric-oxide-dependent or nitric-oxide-independent mechanisms. Cancer Res 1994; 54:24627.
  • 17
    Routes JM, Morris K, Ellison MC, Ryan S. Macrophages kill human papillomavirus type 16, E6-expressing tumor cells by tumor necrosis factor alpha- and nitric oxide-dependent mechanisms. J Virol 2005; 79:11623.
  • 18
    Decker T, Lohmannmatthes ML, Gifford GE. Cell-associated tumor-necrosis-factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J Immunol 1987; 138:95762.
  • 19
    Paulnock DM, Demick KP, Coller SP. Analysis of interferon-gamma-dependent and -independent pathways of macrophage activation. J Leukoc Biol 2000; 67:67782.
  • 20
    Rolink A, Melchers F, Andersson J. The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity 1996; 5:31930.
  • 21
    Palmblad K, Andersson U. Identification of rat IL-1 beta, IL-2, IFN-gamma and TNF-alpha in activated splenocytes by intracellular immunostaining. Biotechnic Histochem 2000; 75:1019.
  • 22
    Matsuura M, Saito S, Hirai Y, Okamura H. A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur J Biochem 2003; 270:401625.
  • 23
    Liew FY, Millott S, Parkinson C, Palmer RMJ, Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric-oxide from L-arginine. J Immunol 1990; 144:47947.
  • 24
    Silva JS, Vespa GN, Cardoso MAG, Aliberti JCS, Cunha FQ. Tumor necrosis factor alpha mediates resistance to typanosoma-cruzi infection in mice by inducing nitric-oxide production in infected gamma-interferon-activated macrophages. Infect Immun 1995; 63:48627.
  • 25
    Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004; 75:16389.
  • 26
    Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. The mononuclear phagocyte system revisited. J Leukoc Biol 2002; 72:6217.
  • 27
    Andrade RM, Portillo JAC, Wessendarp M, Subauste CS. CD40 signaling in macrophages induces activity against an intracellular pathogen independently of gamma interferon and reactive nitrogen intermediates. Infect Immun 2005; 73:311523.
  • 28
    Al-Sarireh B, Eremin O. Tumour-associated macrophages (TAMS): disordered function, immune suppression and progressive tumour growth. J Royal College Surgeons Edinburgh 2000; 45:116.
  • 29
    Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1999; 189:134353.
  • 30
    Cappello P, Caorsi C, Bosticardo M et al. CCL16/LEC powerfully triggers effector and antigen-presenting functions of macrophages and enhances T cell cytotoxicity. J Leukoc Biol 2004; 75:13542.
  • 31
    Singh RA, Sodhi A. LFA-1-dependent tumoricidal activity of cisplatin-treated macrophages. Immunol Cell Biol 1998; 76:3439.
  • 32
    Tsung K, Dolan JP, Tsung YL, Norton JA. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 2002; 62:506975.
  • 33
    Thomsen LL, Miles DW. Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 1998; 17:10718.
  • 34
    Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988; 157:8794.
  • 35
    Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL. Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol 2006; 176:309318.
  • 36
    Coussens LM, Werb Z. Inflammatory cells and cancer. Think different! J Exp Med 2001; 193:23F26.
  • 37
    Serafini P, De Santo C, Marigo I. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 2004; 53:6472.
  • 38
    Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 2005; 65:343746.
  • 39
    Sinha P, Clements VK, Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 2005; 174:63645.