SEARCH

SEARCH BY CITATION

References

  • 1
    Colonna MG, Trinchieri Liu Y-J. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5:121926.
  • 2
    Liu Y-J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Ann Rev Immunol 2005; 23:275306.
  • 3
    Janeway CA, Medzhitov R. Innate immune recognition. Ann Rev Immunol 2002; 20:197216.
  • 4
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Ann Rev Immunol 2003; 21:33576.
  • 5
    Guzylack-Piriou L, Balmelli C, McCullough KC, Summerfield AS. Type A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-α, tumour necrosis factor-a and interleukin-12. Immunology 2004; 112:2837.
  • 6
    Summerfield A, Guzylack-Piriou L, Schaub A, Carrasco CP, Tâche V, Charley B, McCullough KC. Porcine peripheral blood dendritic cells and natural interferon-producing cells. Immunology 2003; 110:4409.
  • 7
    Hemmi H, Takeuchi O, Kawai T et al. A toll-like receptor recognizes bacterial DNA. Nature 2000; 408:7405.
  • 8
    Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004; 103:14337.
  • 9
    Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003; 198:51320.
  • 10
    Haller O, Kochs G, Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 2006; 344:11930.
  • 11
    Schlender J, Hornung V, Finke S et al. Inhibition of toll-like receptor 7- and 9-mediated α/β interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J Virol 2005; 79:550715.
  • 12
    Vincent IE, Carrasco CP, Guzylack-Piriou L, McCullough KC, Summerfield A. Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 2005; 115:38898.
  • 13
    Meehan BM, McNeilly F, Todd D et al. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol 1998; 79:21719.
  • 14
    Allan GM. McNeilly F, Kennedy S et al. Isolation of porcine circovirus-like viruses from pigs with a wasting disease in the USA and Europe. J Vet Diagn Invest 1998; 10:310.
  • 15
    Clark EG. Pathology of the post-weaning multisystemic syndrome of pigs. Proc West Can Assoc Swine Pract 1996; Abstracts:225.
  • 16
    Allan GM, McNeilly F, Kennedy S, Meehan BM, Ellis JA, Krakowa S. Immunostimulation, PCV2 and PMWS. Vet Rec 2000; 147:1701.
  • 17
    Chae C. A review of porcine circovirus 2-associated syndrome and diseases. Vet J 2005; 169:32636.
  • 18
    Harding JC. The clinical expression and emergence of porcine circovirus type 2. Vet Microbiol 2004; 98:1315.
  • 19
    Resendes A, Segales J, Balasch M et al. Lack of effect of a commercial vaccine adjuvant on the development of post-weaning multisystemic wasting syndrome (PMWS) in porcine circovirus type 2 (PCV2) experimentally infected conventional pigs. Vet Res 2004; 35:8390.
  • 20
    Segales J, Calsamiglia M, Olvera A, Sibila M, Badiella L, Domingo M. Quantification of porcine circovirus (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without post-weaning multisystemic wasting syndrome (PMWS). Vet Microbiol 2005; 111:2239.
  • 21
    Allan GM, Ellis JA. Porcine circoviruses: a review. J Vet Diagn Invest 2000; 12:314.
  • 22
    Kim J, Chung HK, Chae C. Association of porcine circovirus 2 with porcine respiratory disease complex. Vet J 2003; 166:25156.
  • 23
    Rovira A, Balasch M, Segales J et al. Experimental inoculation of conventional pigs with porcine reproductive syndrome virus and porcine circovirus type 2. J Virol 2002; 76:32329.
  • 24
    Wellenberg GJ, Stockhofe-Zurwieden N, Boersma WJ, De Jong MF, Elbers AR. The presence of co-infection in pigs with cervical signs of PMWS in the Netherlands: a case-control study. Res Vet Sci 2004; 77:17784.
  • 25
    Nielsen J, Vincent IE, Botner A, Ladekjaer-Mikkelsen A-S, Allan G, Summerfield A, McCullough KC. Association of lymphopenia with the porcine circovirus type 2 induced post-weaning multisystemic wasting syndrome. Vet Immunol Immunopathol 2003; 92:97111.
  • 26
    Vincent IE, Carrasco CP, Hermann B, Meehan BM, Allan GM, Summerfield A, McCullough KC. Dendritic cells harbour infectious PCV2 in the absence of apparent cell modulation or replication of the virus. J Virol 2003; 77:13288300.
  • 27
    Allan GM, McNeilly F, Foster JC, Adair B. Infection of leucocyte cell cultures derived from different species with pig circovirus. Vet Microbiol 1994; 41:26779.
  • 28
    McNeilly F, McNair L, Mackie DP et al. Production, characterization and applications of monoclonal antibodies to porcine circovirus type 2. Arch Virol 2001; 146:90922.
  • 29
    Knoetig SM, Summerfield A, Spagnuolo-Weaver M, McCullough KC. Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology 1999; 97:35966.
  • 30
    Summerfield AS, Rziha HJ. Functional characterization of porcine CD4+ and CD8+ extrathymic T lymphocytes. Cell Immunol 1996; 168:2916.
  • 31
    Charley B, Lavenant L, Lefevre F. Coronavirus transmissible gastroenteritis virus mediated induction of IFN-a-mRNA in porcine leucocytes requires prior synthesis of soluble proteins. Vet Res 1994; 25:2936.
  • 32
    McCullough KC, Schaffner R, Fraefel W, Kihm U. The relative density of CD44-positive porcine monocytic cell populations varies between isolations and upon culture and influences susceptibility to infection by African swine fever virus. Immunol Lett 1993; 37:839.
  • 33
    Balmelli C, Vincent IE, Rau H, Guzylack-Piriou L, McCullough KC, Summerfield A. FcgRII-dependent sensitization of natural interferon-producing cells for viral infection and interferon-α responses. Eur J Immunol 2005; 35:240615.
  • 34
    Baudoux P, Carrat C, Besnardeau L, Charley B, Laude H. Coronavirus pseudoparticles formed with recombinant M and E proteins induce α interferon synthesis by leucocytes. J Virol 1998; 72:863643.
  • 35
    Malmgaard L, Melchjorsen J, Bowie AG, Mogensen SC, Paludan SR. Viral activation of macrophages through TLR-dependent and independent pathways. J Immunol 2004; 173:68908.
  • 36
    Allan GM, McNeilly F, Cassidy JP, Reilly GA, Adair B, Ellis WA, McNulty MS. Pathogenesis of porcine circovirus: experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet Microbiol 1995; 44:4964.
  • 37
    Tischer I, Mields W, Wolff D, Vagt M, Griem W. Studies on epidemiology and pathogenecity of porcine circovirus. Arch Virol 1986; 91:2716.
  • 38
    Fitzgerald-Bocarsky P. Natural interferon-α producing cells: the plasmacytoid dendritic cells. Bio Techniques 2002; 33 (Suppl):1629.
  • 39
    Yamada H, Gursel I, Takeshita F, Conover J, Ishii KJ, Gursel M, Takeshita S, Klinman DM. Effect of suppressive DNA on CpG-induced immune activation. J Immunol 2002; 169:55904.
  • 40
    Krieg AM, Wu T, Weeratnar R et al . Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. PNAS 1998; 95:126316.
  • 41
    Hasslung FC, Berg M, Allan GM, Meehan BM, McNeilly F, Fossum C. Identification of a sequence from the genome of porcine circovirus type 2 with an inhibitory effect on IFN-α production by porcine PBMCs. J Gen Virol 2003; 84:293745.
  • 42
    Charley B, Levenant L, Delmas B. Glycosylation is required for coronavirus TGEV to induce an efficient production of IFN-α by blood mononuclear cells. Scand J Immunol 1991; 33:43540.
  • 43
    Beignon AS, McKenna K, Skoberne M et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via toll-like receptor–viral RNA interactions. J Clin Invest 2005; 115:326575.
  • 44
    Latz E, Schoenemeyer A, Visintin A et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 2004; 5:1908.
  • 45
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004; 4:499511.