SEARCH

SEARCH BY CITATION

References

  • 1
    Matzinger P. An innate sense of danger. Ann NY Acad Sci 2002; 961:3412.
  • 2
    Wysocka M, Robertson S, Riemann H et al. IL-12 suppression during experimental endotoxin tolerance: dendritic cell loss and macrophage hyporesponsiveness. J Immunol 2001; 166:750413.
  • 3
    Wilson CS, Seatter SC, Rodriguez JL, Bellingham J, Laurel C, West MA. In vivo endotoxin tolerance: impaired LPS-stimulated TNF-release of monocytes from patients with sepsis but not SIRS. J Surg Res 1997; 69:1016.
  • 4
    Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348 (2):13850.
  • 5
    Perry JA, Olver CS, Burnett RC, Avery AC. Cutting edge. The acquisition TLR tolerance during malaria infection impacts on T cell activation. J Immunol 2005; 174:59215.
  • 6
    Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J Immunol 2005; 174:445360.
  • 7
    Uhrig A, Banafsche R, Kremer M et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J Leukoc Biol 2005; 77:62633.
  • 8
    Dobrovolskaia MA, Medvedev AE, Thomas KE et al. Induction of in vitro reprogramming by Toll-like receptor (TLR) 2 and TLR4 agonists in murine macrophages: effects of TLR ‘homotolerance’ versus ‘heterotolerance’ on NF-κB signaling pathway components. J Immunol 2003; 170:50819.
  • 9
    Yeo S-J, Yoon J-G, Hong S-C, Yi A-K. CpG DNA induces self and cross-hyporesponsiveness of RAW264.7 cells in response to CpG DNA and lipopolysaccharide: alterations in IL-1 receptor-associated kinase expression. J Immunol 2003; 170:105261.
  • 10
    Bafica A, Scanga CA, Equils O, Sher A. The induction of Toll-like receptor tolerance enhances rather than suppresses HIV-1 gene expression in transgenic mice. J Leukoc Biol 2004; 75:4606.
  • 11
    Sato S, Nomura F, Kawai T, Takeuchi O, Muhlradt PF, Takeda K, Akira S. Synergy and cross-tolerance between Toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J Immunol 2000; 165:7096101.
  • 12
    Wang JH, Doyle M, Manning BJ, Di Wu Q, Blankson S, Redmond HP. Induction of bacterial lipoprotein tolerance is associated with suppression of Toll-like receptor 2 expression. J Biol Chem 2002; 277 (39):3606875.
  • 13
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004; 4:499511.
  • 14
    Moynagh PN. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway. Trends Immunol 2005; 26 (9):46976.
  • 15
    Medvedev AE, Kopydlowski KM, Vogel SN. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and Toll-like receptor 2 and 4 gene expression. J Immunol 2000; 164:556474.
  • 16
    Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA, Golenbock DT. The interferon regulatory factor, IRF5, is a central mediator of Toll-like receptor 7 signaling. J Biol Chem 2005; 280 (17):1700512.
  • 17
    Gautier G, Humbert M, Deauvieau F et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 2005; 201:143546.
  • 18
    Hirotani T, Yamamoto M, Kumagai Y, Uematsu S, Kawase I, Takeuchi O, Akira S. Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-β. Biochem Biophys Res Commun 2005; 328:38392.
  • 19
    Fitzgerald KA, Rowe DC, Barnes BJ et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J Exp Med 2003; 198:104355.
  • 20
    Kim KI, Malakhova OA, Hoebe K, Yan M, Beutler B, Zhang D-E. Enhanced antibacterial potential in UBP43-deficient mice against Salmonella typhimurium infection by up-regulating type I IFN signaling. J Immunol 2005; 175:84754.
  • 21
    Alves-Rosa F, Vulcano M, Beigier-Bompadre M, Fernandez G, Palermo M, Isturiz MA. Interleukin-1beta induces in vivo tolerance to lipopolysaccharide in mice. Clin Exp Immunol 2002; 128:2218.
  • 22
    Grutz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 2005; 77:315.
  • 23
    Varma TK, Durham M, Murphey ED, Cui W, Huang Z, Lin CY, Toliver-Kinsky T, Sherwood ER. Endotoxin priming improves clearance of Pseudomonas aeruginosa in wild-type and interleukin-10 knockout mice. Infect Immun 2005; 73:73407.
  • 24
    Schwartz DA, Wohlford-Lenane CL, Quinn TJ, Krieg AM. Bacterial DNA or oligonucleotides containing unmethylated CpG motifs can minimize lipopolysaccharide-induced inflammation in the lower respiratory tract through an IL-12-dependent pathway. J Immunol 1999; 163:22431.
  • 25
    Gould MP, Greene JA, Bhoj V, DeVecchio JL, Heinzel FP. Distinct modulatory effects of LPS and CpG on IL-18-dependent IFN-γ synthesis. J Immunol 2004; 172:175462.
  • 26
    Boyte W, Meals E, English B. Acquired hyporesponsiveness to bacterial lipopolysaccharide and interferon-gamma in RAW 264.7 macrophages. Shock 1996; 6:21822.
  • 27
    Henricson B, Manthey C, Perera P, Hamilton T, Vogel S. Dissociation of lipopolysaccharide (LPS) -inducible gene expression in murine macrophages pretreated with smooth LPS versus monophosphoryl lipid A. Infect Immun 1993; 61:2325.
  • 28
    O'Brien GC, Wang JH, Redmond HP. Bacterial lipoprotein induces resistance to Gram-negative sepsis in TLR4-deficient mice via enhanced bacterial clearance. J Immunol 2005; 174:10206.
  • 29
    Lehner MD, Ittner J, Bundschuh DS, Van Rooijen N, Wendel A, Hartung T. Improved innate immunity of endotoxin-tolerant mice increases resistance to Salmonella enterica serovar typhimurium infection despite attenuated cytokine response. Infect Immun 2001; 69:46371.
  • 30
    Wang JH, Doyle M, Manning BJ, Blankson S, Wu QD, Power C, Cahill R, Redmond HP. Cutting edge: bacterial lipoprotein induces endotoxin-independent tolerance to septic shock. J Immunol 2003; 170:1418.
  • 31
    Wolk K, Kunz S, Crompton NEA, Volk H-D, Sabat R. Multiple mechanisms of reduced major histocompatibility complex class II expression in endotoxin tolerance. J Biol Chem 2003; 278 (20):180306.
  • 32
    Wolk K, Docke W-D, Von Baehr V, Volk H-D, Sabat R. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood 2000; 96:21823.
  • 33
    Lee JY, Lowell CA, Lemay DG et al. The regulation of the expression of inducible nitric oxide synthase by Src-family tyrosine kinases mediated through MyD88-independent signaling pathways of Toll-like receptor 4. Biochem Pharmacol 2005; 70:123140.
  • 34
    Fejer G, Szalay K, Gyory I et al. Adenovirus infection dramatically augments lipopolysaccharide-induced TNF production and sensitizes to lethal shock. J Immunol 2005; 175:1498506.
  • 35
    Nansen A, Randrup Thomsen A. Viral infection causes rapid sensitization to lipopolysaccharide. Central role of IFN-αβ. J Immunol 2001; 166:9828.
  • 36
    Wongratanacheewin S, Kespichayawattana W, Intachote P, Pichyangkul S, Sermswan RW, Krieg AM, Sirisinha S. Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei. Infect Immun 2004; 72:4494502.
  • 37
    Cusson-Hermance N, Khurana S, Lee TH, Fitzgerald KA, Kelliher MA. Rip1 mediates the Trif-dependent Toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 2005; 280 (44):365606.
  • 38
    Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17:114.
  • 39
    Dunne A, O'Neill LAJ. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Science STKE 2003; 171:re3.
  • 40
    Naiki Y, Michelsen KS, Schroder NWJ et al. MyD88 is pivotal for the early inflammatory response and subsequent bacterial clearance and survival in a mouse model of Chlamydia pneumoniae pneumonia. J Biol Chem 2005; 280 (32):292429.
  • 41
    Power MR, Peng Y, Maydanski E, Marshall JS, Lin T-J. The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 2004; 279 (47):4931522.
  • 42
    Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM. Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 2004; 72:537382.
  • 43
    Wieland CW, Florquin S, Maris NA, Hoebe K, Beutler B, Takeda K, Akira S, Van Der Poll T. The MyD88-dependent, but not the MyD88-independent, pathway of TLR4 signaling is important in clearing nontypeable Haemophilus influenzae from the mouse lung. J Immunol 2005; 175:60429.
  • 44
    Seth RB, Sun L, Ea C-K, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFκB and IRF3. Cell 2005; 122:66982.
  • 45
    Li K, Chen Z, Kato N, Gale M Jr, Lemon SM. Distinct poly (I-C) and virus-activated signaling pathways leading to interferon-β production in hepatocytes. J Biol Chem 2005; 280 (17):1673947.
  • 46
    Foy E, Li K, Sumpter R Jr. et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. PNAS 2005; 102:298691.
  • 47
    Li K, Foy E, Ferreon JC et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. PNAS 2005; 102:29927.
  • 48
    Li X-D, Sun L, Seth RB, Pineda G, Chen ZJ. From the cover: hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. PNAS 2005; 102 (49):1771722.
  • 49
    Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 2005; 175:277782.
  • 50
    Johnson GB, Brunn GJ, Platt JL. Cutting edge: an endogenous pathway to systemic inflammatory response syndrome (SIRS)-like reactions through Toll-like receptor 4. J Immunol 2004; 172:204.
  • 51
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005; 175:3429.