• 1
    Bloom BR, Fine PEM. The BCG experience: implications for future vaccines against tuberculosis. In: Bloom, BR, ed. Tuberculosis. Pathogenesis, Protection, and Control. Washington, DC: ASM Press, 1994:53157.
  • 2
    Andersen P, Doherty TM. The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat Rev Microbiol 2005; 3:65662.
  • 3
    Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus Calmette–Guérin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 2000; 97:138539.
  • 4
    Grode L, Seiler P, Baumann S et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette–Guérin mutants that secrete listeriolysin. J Clin Invest 2005; 115:24729.
  • 5
    McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, Fletcher HA, Hill AV. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 2004; 10:12404.
  • 6
    Brandt L, Skeiky YA, Alderson MR et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 2004; 72:662232.
  • 7
    Cole ST, Brosch R, Parkhill J et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 11 (393):53744.
  • 8
    Bonato VL, Goncalves ED, Soares EG, Santos Junior RR, Sartori A, Coelho-Castelo AA, Silva CL. Immune regulatory effect of pHSP65 DNA therapy in pulmonary tuberculosis. activation of CD8+ cells, interferon-γ recovery and reduction of lung injury. Immunology 2004; 113:1308.
  • 9
    Lowrie DB, Tascon RE, Bonato VL et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 1999; 400:26971.
  • 10
    Skeiky YA, Alderson MR, Ovendale PJ et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 2004; 172:761828.
  • 11
    Olsen AW, Van Pinxteren LAH, Okkels LM, Rasmussen PB, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Infect Immun 2001; 69:27738.
  • 12
    Andersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun 1994; 62:253644.
  • 13
    Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I. Proteins released from Mycobacterium tuberculosis during growth. Infect Immun 1991; 19:190510.
  • 14
    Andersen P, Askgaard D, Ljungqvist L, Bentzon MW, Heron I. T-cell proliferative response to antigens secreted by Mycobacterium tuberculosis. Infect Immun 1991; 59:155863.
  • 15
    Andersen P, Heron I. Specificity of a protective memory immune response against Mycobacterium tuberculosis. Infect Immun 1993; 61:84451.
  • 16
    Havlir DV, Wallis RS, Boom WH, Daniel TM, Chervenak K, Ellner JJ. Human immune responses to Mycobacterium tuberculosis antigens. Infect Immun 1991; 59:66570.
  • 17
    Roberts AD, Sonnenberg MG, Ordway DJ, Furney SK, Brennan PJ, Belisle JT, Orme IM. Characteristics of protective immunity engendered by vaccination of mice with purified culture filtrate protein antigens of Mycobacterium tuberculosis. Immunol 1995; 85:5027.
  • 18
    Pal PG, Horwitz MA. Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in guinea pig model of pulmonary tuberculosis. Infect Immun 1992; 60:478192.
  • 19
    Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect Immun 2004; 72:614850.
  • 20
    Langermans JAM, Doherty TM, Vervenne RAW et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 2005; 23:274050.
  • 21
    Sheiky YAW, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat Rev Microbiol 2006; 4:46976.
  • 22
    Lindblad EB, Elhay MJ, Silva R, Appelberg R, Andersen P. Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infect Immun 1997; 65:6239.
  • 23
    Klinman DM, Currie D, Gursel I, Verthelyi. Use of CpG oligodeoxynucleotides as immune adjuvants. Immunol Rev 2004; 199:20116.
  • 24
    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374:5468.
  • 25
    Ballas ZD, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996; 157:18407.
  • 26
    Klinman DM, Yi A, Beaucage SL, Conover J, Krieg AM. CpG motifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12 and IFNγ. Proc Natl Acad Sci USA 1996; 93:287983.
  • 27
    Freidag BL, Melton GB, Collins F, Klinman DM, Cheever A, Stobie L, Suen W, Seder RA. CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M. tuberculosis. Infect Immun 2000; 68:294853.
  • 28
    Juffermans NP, Leemand JC, Florquin S, Verbon A, Kolk AH, Speelman P, Van Deventer SJH, Van Der Poll T. CpG Oligodeoxynucleotides enhance host defense during murine tuberculosis. Infect Immun 2002; 70:14752.
  • 29
    Wongratanacheewin S, Kespichayawattana W, Intachote P, Pichyangkul S, Sermswan RW, Krieg AM, Sirisinha S. Immunostimulatory CpG oligodeoxynucleotide confers protection in a murine model of infection with Burkholderia pseudomallei. Infect Immun 2004; 72 (8):4494502.
  • 30
    Kumar S, Jones TR, Oakley MS et al. CpG oligodeoxynucleotide and Montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect Immun 2004; 72:94957.
  • 31
    Al-Mariri A, Tibor A, Mertens P, De Bolle X, Michel P, Godefroid J, Walravens K, Letesson JJ. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant. Infect Immun 2001; 69:481622.
  • 32
    Gramzinski RA, Doolan DL, Sedegah M, Davis HL, Krieg AM, Hoffman SL. Interleukin-12 and gamma interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect Immun 2001; 69:16439.
  • 33
    Bonato VL, Medeiros AI, Lima VM, Dias AR, Faccioliti LH, Silva CL. Downmodulation of CD18 and CD86 on macrophages and VLA-4 on lymphocytes in experimental tuberculosis. Scand J Immunol 2001; 54:56473.
  • 34
    McDonough KA, Kress Y. Cytotoxicity for lung epithelial cells is a virulence associated phenotype of Mycobacterium tuberculosis. Infect Immun 1995; 63:480211.
  • 35
    Sable SB, Verma I, Khuller GK. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Vaccine 2005; 23:417584.
  • 36
    Hubbard RD, Flory CM, Collins A. Immunization of mice with mycobacterial culture filtrate proteins. Clin Exp Immunol 1992; 87:948.
  • 37
    Hogarth PJ, Jahans KJ, Hecker R, Hewinson RG, Chambers MA. Evaluation of adjuvants for protein vaccines against tuberculosis in guinea pigs. Vaccine 2003; 21:97782.
  • 38
    Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med 2005; 11 (4 Suppl.):S638.
  • 39
    Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol 2004; 82:48896.
    Direct Link:
  • 40
    Degen WG, Jansen T, Schijns VE. Vaccine adjuvant technology: from mechanistic concepts to practical applications. Expert Rev Vaccines 2003; 2:32735.
  • 41
    Rao V. Increased expression of Mycobacterium tuberculosis 19 kDa lipoprotein obliterates the protective efficacy of BCG by polarizing host immune responses to the Th2 subtype. Scand J Immunol 2005; 61:4107.
  • 42
    Hovav AH, Mullerad J, Davidovitch L, Fishman Y, Bigi F, Cataldi A, Bercovier H. The Mycobacterium tuberculosis recombinant 27-kilodalton lipoprotein induces a strong Th1-type immune response deleterious to protection. Infect Immun 2003; 71:314654.
  • 43
    Majlessi L, Simsova M, Jarvis Z et al. An increase in antimycobacterial Th1-cell response by prime-boost protocols of immunization does not enhance protection against tuberculosis. Infect Immun 2006; 74:212837.
  • 44
    Hsieh MJ, Junqueira-Kipinis AP, Hoeffer A, Turner OC, Orme IA. Incorporation of CpG oligodeoxynucleotide fails to enhance the protective efficacy of a subunit vaccine against Mycobacterium tuberculosis. Vaccine 2004; 22:6559.
  • 45
    Rook GAW, Hernandez-Pando R, Dheda K, Seah GT. IL-4 in tuberculosis: implications for vaccine design. Trends Immunol 2004; 25:4838.
  • 46
    Rook GAW, Dheda K, Zumla A. Do successful tuberculosis vaccines need to be immunoregulatory rather than merely Th1-boosting? Vaccine 2005; 23:211520.
  • 47
    Hernandez-Pando R, Rook GAW. The role of TNF-alpha in T cell-mediated inflammation depends on the Th1/Th2 cytokine balance. Immunology 1994; 70:21007.
  • 48
    Rook GAW, Dheda K, Zumla A. Immune responses to tuberculosis in developing countries: implications for new vaccines. Nat Rev Immunol 2005; 5:6617.
  • 49
    Van Crevel R, Karyadi E, Preyers F, Leenders M, Kullberg BJ, Nelwan RH, Van Der Meer JW. Increased production of interleukin-4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J Infect Dis 2000; 181:11947.
  • 50
    Seah GT, Scott GM, Rook GAW. Type 2 cytokine gene activation and its relationship to extent of disease in patients with tuberculosis. J Infect Dis 2000; 181:3859.
  • 51
    Hernandez-Pando R, Aguilar D, Hernandez MLG, Orozco H, Rook GAW. Pulmonary tuberculosis in BALB/c mice with non-functional IL-4 genes. changes in the regulation of fibrosis. Eur J Immunol 2004; 34:17483.
  • 52
    Hernandez-Pando R, Pavon L, Arriaga K, Orozco H, Madrid-Marina V, Rook GAW. Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection. Infect Immun 1997; 65:331727.