• 1
    Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47:187376.
  • 2
    Handa K, Suzuki R, Matsui H, Shimizu Y, Kumagai K. Natural killer (NK) cells as a responder to interleukin 2 (IL 2). II. IL-2-induced interferon gamma production. J Immunol 1983; 130:98892.
  • 3
    Mehrotra PT, Donnelly RP, Wong S et al. Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. J Immunol 1998; 160:263744.
  • 4
    Bluman EM, Bartynski KJ, Avalos BR, Caligiuri MA. Human natural killer cells produce abundant macrophage inflammatory protein-1 alpha in response to monocyte-derived cytokines. J Clin Invest 1996; 97:27227.
  • 5
    Fehniger TA, Shah MH, Turner MJ et al. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J Immunol 1999; 162:451120.
  • 6
    Levitt LJ, Nagler A, Lee F, Abrams J, Shatsky M, Thompson D. Production of granulocyte/macrophage-colony-stimulating factor by human natural killer cells. Modulation by the p75 subunit of the interleukin 2 receptor and by the CD2 receptor. J Clin Invest 1991; 88:6775.
  • 7
    Jacobs R, Hintzen G, Kemper A, Beul K, Behrens G, Kempf S, Sykora KW, Schmidt RE. CD56bright cells differ in their KIR repertoire and function from CD56dim NK cells. Eur J Immunol 2001; 31:31216.
  • 8
    Wendt K, Wilk E, Buyny S, Buer J, Schmidt RE, Jacobs R. Gene and protein characteristics reflect functional diversity of CD56dim and CD56bright NK cells. J Leukoc Biol 2006; 80:152941.
  • 9
    Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 2004; 172:145562.
  • 10
    Jacobs R, Weber K, Wendt K, Heiken H, Schmidt RE. Altered coexpression of lectin-like receptors CD94 and CD161 on NK and T cells in HIV patients. J Clin Immunol 2004; 24:2816.
  • 11
    Arnon TI, Achdout H, Lieberman N et al. The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 2004; 103:66472.
  • 12
    Mandelboim O, Lieberman N, Lev M et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001; 409:105560.
  • 13
    Arnon TI, Achdout H, Levi O et al. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 2005; 6:51523.
  • 14
    Vieillard V, Strominger JL, Debre P. NK cytotoxicity against CD4+ T cells during HIV-1 infection. a gp41 peptide induces the expression of an NKp44 ligand. Proc Natl Acad Sci USA 2005; 102:109816.
  • 15
    Parrish-Novak J, Dillon SR, Nelson A et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408:5763.
  • 16
    Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, Sugamura K. Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 2001; 167:15.
  • 17
    Leonard WJ, Spolski R. Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol 2005; 5:68898.
  • 18
    Wang G, Tschoi M, Spolski R et al. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 2003; 63:901622.
  • 19
    Habib T, Nelson A, Kaushansky K. IL-21: a novel IL-2-family lymphokine that modulates B, T, and natural killer cell responses. J Allergy Clin Immunol 2003; 112:103345.
  • 20
    Strengell M, Matikainen S, Siren J, Lehtonen A, Foster D, Julkunen I, Sareneva T. IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 2003; 170:54649.
  • 21
    Sivori S, Cantoni C, Parolini S, Marcenaro E, Conte R, Moretta L, Moretta A. IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 2003; 33:343947.
  • 22
    Jacobs R, Pawlak CR, Mikeska E, Meyer-Olson D, Martin M, Heijnen CJ, Schedlowski M, Schmidt RE. Systemic lupus erythematosus and rheumatoid arthritis patients differ from healthy controls in their cytokine pattern after stress exposure. Rheumatol 2001; 40:86875.
  • 23
    Bryant J, Day R, Whiteside TL, Herberman RB. Calculation of lytic units for the expression of cell-mediated cytotoxicity. J Immunol Meth 1992; 146:91103.
  • 24
    Jacobs R, Stoll M, Stratmann G, Leo R, Link H, Schmidt RE. CD16– CD56+ natural killer cells after bone marrow transplantation. Blood 1992; 79:323944.
  • 25
    Duprez V, Ferrer M, Dautry-Varsat A. High-affinity interleukin 2 receptor alpha and beta chains are internalized and remain associated inside the cells after interleukin 2 endocytosis. J Biol Chem 1992; 267:1863943.
  • 26
    Yu A, Malek TR. The proteasome regulates receptor-mediated endocytosis of interleukin-2. J Biol Chem 2001; 276:3815.
  • 27
    Sarantos MR, Raychaudhuri S, Lum AF, Staunton DE, Simon SI. Leukocyte function-associated antigen 1-mediated adhesion stability is dynamically regulated through affinity and valency during bond formation with intercellular adhesion molecule-1. J Biol Chem 2005; 280:282908.
  • 28
    Fagerholm SC, Hilden TJ, Nurmi SM, Gahmberg CG. Specific integrin alpha and beta chain phosphorylations regulate LFA-1 activation through affinity-dependent and -independent mechanisms. J Cell Biol 2005; 171:70515.
  • 29
    Moretta A, Poggi A, Pende D et al. CD69-mediated pathway of lymphocyte activation: anti-CD69 monoclonal antibodies trigger the cytolytic activity of different lymphoid effector cells with the exception of cytolytic T lymphocytes expressing T cell receptor alpha/beta. J Exp Med 1991; 174:13938.
  • 30
    Bromberg JF. Activation of STAT proteins and growth control. Bioessays 2001; 23:1619.
  • 31
    Liang S, Wei H, Sun R, Tian Z. IFNα regulates NK cell cytotoxicity through STAT1 pathway. Cytokine 2003; 23:1909.
  • 32
    Tanabe Y, Nishibori T, Su L, Arduini RM, Baker DP, David M. Cutting edge. Role of STAT1, STAT3, and STAT5 in IFN-alpha beta responses in T lymphocytes. J Immunol 2005; 174:60913.
  • 33
    Campbell JD, Cook G, Robertson SE, Fraser A, Boyd KS, Gracie JA, Franklin IM. Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol 2001; 167:55361.
  • 34
    Smyth MJ, Wallace ME, Nutt SL, Yagita H, Godfrey DI, Hayakawa Y. Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med 2005; 201:197385.
  • 35
    Ugai S, Shimozato O, Yu L et al. Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and -independent antitumor effects. Cancer Gene Ther 2003; 10:7718.
  • 36
    Nakano H, Kishida T, Asada H et al. Interleukin-21 triggers both cellular and humoral immune responses leading to therapeutic antitumor effects against head and neck squamous cell carcinoma. J Gene Med 2006; 8:909.
  • 37
    Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S, Smyth MJ, Lanier LL. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 2005; 175:216773.
  • 38
    Heimann DM, Schwartzentruber DJ. Gastrointestinal perforations associated with interleukin-2 administration. J Immunother 2004; 27:2548.
  • 39
    Van Spronsen DJ, De Weijer KJ, Mulders PF, De Mulder PH. Novel treatment strategies in clear-cell metastatic renal cell carcinoma. Anticancer Drugs 2005; 16:70917.
  • 40
    He H, Wisner P, Yang G et al. Combined IL-21 and low-dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model. J Transl Med 2006; 4:24.
  • 41
    Roda JM, Parihar R, Lehman A, Mani A, Tridandapani S, Carson WE III. Interleukin-21 enhances NK cell activation in response to antibody-coated targets. J Immunol 2006; 177:1209.