• 1
    Kim SU, De Vellis J. Microglia in health and disease. J Neurosci Res 2005; 81:30213.
  • 2
    Rot A, Von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004; 22:891928.
  • 3
    Sunderkotter C, Nikolic T, Dillon MJ et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172:44107.
  • 4
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5:95364.
  • 5
    Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19:7182.
  • 6
    Boring L, Gosling J, Chensue SW et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C–C chemokine receptor 2 knockout mice. J Clin Invest 1997; 100:255261.
  • 7
    Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. Journal Exp Med 2000; 192:107580.
  • 8
    Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2001; 98:795863.
  • 9
    Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 2006; 7:3117.
  • 10
    Tsou CL, Peters W, Si Y et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007; 117:9029.
  • 11
    Tacke F, Alvarez D, Kaplan TJ et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 2007; 117:18594.
  • 12
    Quinones MP, Ahuja SK, Jimenez F et al. Experimental arthritis in CC chemokine receptor 2-null mice closely mimics severe human rheumatoid arthritis. J Clin Invest 2004; 113:85666.
  • 13
    Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1−/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003; 111:33340.
  • 14
    Combadiere C, Potteaux S, Gao JL et al. Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 2003; 107:100916.
  • 15
    Feng LL, Chen SZ, Garcia GE et al. Prevention of crescentic glomerulonephritis by immunoneutralization of the fractalkine receptor CX3CR1. Kidney Int 1999; 56:61220.
  • 16
    Soriano SG, Amaravadi LS, Wang YF et al. Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. J Neuroimmunol 2002; 125:5965.
  • 17
    Auffray C, Fogg D, Garfa M et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007; 317:66670.
  • 18
    Harrison JK, Jiang Y, Chen SZ et al. Role for neuronally-derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 1998; 95:10896901.
  • 19
    Cardona AE, Pioro EP, Sasse ME et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 9:91724.
  • 20
    Mizuno T, Kawanokuchi J, Numata K, Suzumura A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 2003; 979:6570.
  • 21
    Zujovic V, Benavides J, Vige X, Carter C, Taupin V. Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 2000; 29:30515.
  • 22
    Meucci O, Fatatis A, Simen AA, Miller RJ. Expression of CX(3)CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 2000; 97:807580.
  • 23
    Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 1999; 163:162835.
  • 24
    Cross AK, Woodroofe MN. Chemokine modulation of matrix metalloproteinase and TIMP production in adult rat brain microglia and a human microglial cell line in vitro. Glia 1999; 28:1839.
  • 25
    Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ. The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 2000; 165:397403.
  • 26
    Combadiere C, Feumi C, Raoul W et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 2007; 117:29208.
  • 27
    Jung S, Aliberti J, Graemmel P et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000; 20:410614.
  • 28
    Davalos D, Grutzendler J, Yang G et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8:7528.
  • 29
    Forrester JV, Huitinga I, Lumsden L, Dijkstra CD. Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res 1998; 17:42637.
  • 30
    Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick J, Dick AD. Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 2002; 161:166977.
  • 31
    Calder CJ, Nicholson LB, Dick AD. Mechanisms for inducing nasal mucosal tolerance in experimental autoimmune uveoretinitis. Methods 2006; 38:6976.
  • 32
    Jiang H-R, Lumsden L, Forrester JV. Macrophages and dendritic cells in IRBP-induced experimental autoimmune uveoretinitis in B10RIII mice. Invest Ophthalmol Vis Sci 1999; 40:317785.
  • 33
    Chan-Ling T. Glial, vascular, and neuronal cytogenesis in whole-mounted cat retina. Microsc Res Tech 1997; 36:116.
  • 34
    Abràmoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004; 11:3642.
  • 35
    Stence N, Waite M, Dailey ME. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 2001; 33:25666.
  • 36
    Quinones MP, Estrada CA, Kalkonde Y et al. The complex role of the chemokine receptor CCR2 in collagen-induced arthritis: implications for therapeutic targeting of CCR2 in rheumatoid arthritis. J Mol Med 2005; 83:67281.
  • 37
    Crane IJ, McKillop-Smith S, Wallace CA, Lamont GR, Forrester JV. Expression of the chemokines MIP-1α, MCP-1 and RANTES in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 2001; 42:154752.
  • 38
    Foxman EF, Zhang MF, Hurst SD et al. Inflammatory mediators in uveitis: differential induction of cytokines and chemokines in Th1- versus Th2-mediated ocular inflammation. J Immunol 2002; 168:248392.
  • 39
    Crane IJ, Xu H, Wallace C et al. Involvement of CCR5 in the passage of Th1-type cells across the blood–retina barrier in experimental autoimmune uveitis. J Leukoc Biol 2006; 79:43543.
  • 40
    Crane IJ, Xu H, Manivannan A et al. Effect of anti-macrophage inflammatory protein-1α on leukocyte trafficking and disease progression in experimental autoimmune uveoretinitis. Eur J Immunol 2003; 33:40210.
  • 41
    Rao NA, Kimoto T, Zamir E et al. Pathogenic role of retinal microglia in experimental uveoretinitis. Invest Ophthalmol Vis Sci 2003; 44:2231.
  • 42
    Brockhaus J, Moller T, Kettenmann H. Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 1996; 16:8190.
  • 43
    Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308:13148.
  • 44
    Silverman MD, Zamora DO, Pan YZ et al. Constitutive and inflammatory mediator-regulated fractalkine expression in human ocular tissues and cultured cells. Invest Ophthalmol Vis Sci 2003; 44:160815.
  • 45
    Huang D, Shi FD, Jung S et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 2006; 20:896905.
  • 46
    Campbell JJ, Qin SX, Unutmaz D et al. Unique subpopulations of CD56(+) NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 2001; 166:647782.
  • 47
    Kitaichi N, Kotake S, Morohashi T, Onoe K, Ohno S, Taylor AW. Diminution of experimental autoimmune uveoretinitis (EAU) in mice depleted of NK cells. J Leukoc Biol 2002; 72:111721.