SEARCH

SEARCH BY CITATION

References

  • 1
    Hale G, Xia MQ, Tighe HP, Dyer MJ, Waldmann H. The CAMPATH-1antigen (CDw52). Tissue Antigens 1990; 35:11827.
  • 2
    Hale G. CD52 (Campath-1). J Biol Regul Homeost Agents 2001; 15:38691.
  • 3
    Huh Y, Kantarjian H, Pierce SM et al. Expression of human CD52 in human hematopoietic malignancies. Blood 1998; 92: Abstract 4199.
  • 4
    Elsner J, Hochstetter R, Spiekermann K, Kapp A. Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood 1996; 88:468493.
  • 5
    Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood 1993; 82:80712.
  • 6
    Rodig SJ, Abramson JS, Pinkus GS, Treon SP, Dorfman DM, Dong HY, Shipp MA, Kutok JL. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H). Clin Cancer Res 2006; 12:71749.
  • 7
    Ginaldi L, De Martinis M, Matutes E et al. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H. Leuk Res 1998; 22:18591.
  • 8
    Domagala A, Kurpisz M. CD52 antigen – a review. Med Sci Monit 2001; 7:32531.
  • 9
    Rowan WC, Hale G, Tite JP, Brett SJ. Cross-linking of the Campath-1 antigen (CD52) triggers activation of normal human T lymphocytes. Int Immunol 1995; 7:6977.
  • 10
    Masuyama J-I, Yoshio T, Suzuki K et al. Characterization of the 4C8 antigen involved in transendothelial migration of CD26hi T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J Exp Med 1999; 189:97989.
  • 11
    Watanabe T, Masuyama J-I, Sohma Y et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol 2006; 120:24759.
  • 12
    Zent CS, Secreto CR, LaPlant BR et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res 2008; 32:184956.
  • 13
    Golay J, Manganini M, Rambaldi A, Introna M. Effect of alemtuzumab on neoplastic B cells. Haematologica 2004; 89:147683.
  • 14
    Cruz RI, Hernandez-Ilizaliturri FJ, Olejniczak S et al. CD52 over-expression affects rituximab-associated complement-mediated cytotoxicity (CMC) but not antibody-dependent cellular cytotoxicity (ADCC): Pre-clinical evidence that targeting CD52 with alemtuzumab may reverse acquired resistance to rituximab in non-Hodgkin’s lymphoma (NHL). Leuk Lymphoma 2007; 48:242436.
  • 15
    Rowan W, Tite J, Topley P, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 1998; 95:42736.
  • 16
    Smolewski P, Szmigielska-Kaplon A, Cebula B, Jamroziak K, Rogalinska M, Kilianska Z, Robak T. Proapoptotic activity of alemtuzumab alone and in combination with rituximab or purine nucleoside analogues in chronic lymphocytic leukemia cells. Leuk Lymphoma 2005; 46:87100.
  • 17
    Mone AP, Cheney C, Banks AL et al. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia 2006; 20:2729.
  • 18
    Reiff A. A review of Campath in autoimmune disease: biologic therapy in the gray zone between immunosuppression and immunoablation. Hematology 2005; 10:7993.
  • 19
    Brett S, Baxter G, Cooper H, Johnston JM, Tite J, Rapson N. Repopulation of blood lymphocyte sub-populations in rheumatoid arthritis patients treated with the depleting humanized monoclonal antibody, CAMPATH-1H. Immunology 1996; 88:1319.
  • 20
    Coles AJ, Cox A, Le Page E et al. The window of therapeutic opportunity in multiple sclerosis. Evidence from monoclonal antibody therapy. J Neurol 2006; 253:98108.
  • 21
    Cox AL, Thompson SA, Jones JL, Robertson VH, Hale G, Waldmann H, Compston DAS, Coles AJ. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol 2005; 35:333242.
  • 22
    Coles AJ, Compston DAS, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008; 359:1786801.
  • 23
    Kaplan JM, Smith AE. Transient immunosuppression with deoxyspergualin improves longevity of transgene expression and ability to readminister adenoviral vector to the mouse lung. Hum Gene Ther 1997; 8:1095104.
  • 24
    Bindon CI, Hale G, Waldmann H. Importance of antigen specificity for complement-mediated lysis by monoclonal antibodies. Eur J Immunol 1988; 18:150714.
  • 25
    Buggins AG, Mufti GJ, Salisbury J et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood 2002; 100:171520.
  • 26
    Simpson BS, Coles AJ. Rationale for cytotoxic monoclonal antibodies in MS. Int MS J 2007; 14:4856.
  • 27
    Isaacs JD, Greer S, Sharma S et al. Morbidity and mortality in rheumatoid arthritis patients with prolonged and profound therapy-induced lymphopenia. Arthritis Rheum 2001; 44:19982008.
  • 28
    Coles AJ, Wing M, Smith S et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 1995; 354:16915.
  • 29
    Lowenstein H, Shah A, Chant A, Khan A. Different mechanisms of Campath-1H-mediated depletion for CD4+ and CD8+ T cells in peripheral blood. Transpl Int 2006; 19:92736.
  • 30
    Wing MG, Moreau T, Greenwood J et al. Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells. J Clin Invest 1996; 98:281926.
  • 31
    Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E, Czuczman MS. Neutrophils contribute to the biological antitumor activity of Rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res 2003; 9:586673.
  • 32
    Hernandez-Ilizaliturri FJ, Jupudy V, Reising S, Repasky E, Czuczman MS. Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk Lymphoma 2005; 46:177584.