• 1
    Brigl M, Brenner MB. CD1: antigen presentation and T cell function. Annu Rev Immunol 2004; 22:81790.
  • 2
    Kronenberg M. Toward an understanding of NKT cell biology. Annu Rev Immunol 2005; 23:877900.
  • 3
    Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol 2007; 25:297336.
  • 4
    Yoshimoto T, Paul WE. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 1994; 179:128595.
  • 5
    Mattner J, Debord KL, Ismail N et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005; 434:5259.
  • 6
    Kinjo Y, Wu D, Kim G et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005; 434:5205.
  • 7
    Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR. Cell wall glycoshingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 2005; 35:1692701.
  • 8
    Kinjo Y, Tupin E, Wu D et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 2006; 7:97886.
  • 9
    Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003; 4:12307.
  • 10
    Nagarajan NA, Kronenberg M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 2007; 178:270613.
  • 11
    Paget C, Mallevaey T, Speak AO et al. Activation of invariant NKT cells by Toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 2007; 27:597609.
  • 12
    Salio M, Speak AO, Shepherd D et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 2007; 104:204905.
  • 13
    Kawakami K, Kinjo Y, Uezu K et al. Monocyte chemoatrractant protein-1-dependent increase of Vα14 NKT cells in lungs and their role in Th1 response and host defense in cryptococcul infection. J Immunol 2001; 167:652532.
  • 14
    Ishikawa H, Hisaeda H, Taniguchi M et al. CD4+ Vα 14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int Immunol 2000; 12:126774.
  • 15
    Chiba A, Dascher CC, Besra GS, Brenner MB. Rapid NKT cell responses are self-terminating during the course of microbial infection. J Immunol 2008; 181:2292302.
  • 16
    Dieli F, Taniguchi M, Kronenberg M et al. Anti-inflammatory role for Vα14 NK T cells in Mycobacterium bovis Bacillus Calmette–Guérin-infected mice. J Immunol 2003; 171:19618.
  • 17
    Berntman E, Rolf J, Johansson C, Anderson P, Cardell SL. The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur J Immuonol 2005; 35:21009.
  • 18
    Kawakami K, Yamamoto N, Kinjo Y et al. Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 2003; 33:332230.
  • 19
    Nakamatsu M, Yamamoto N, Hatta M et al. Role of interferon-γ in Vα14+ natural killer T cell-mediated host defense against Streptococcus pneumoniae infection in murine lungs. Microbes Infect 2007; 9:36474.
  • 20
    Kumar H, Belperron A, Barthold SW, Bockenstedt LK. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol 2000; 165:4797801.
  • 21
    Miyahira Y, Katae M, Takeda K et al. Activation of natural killer T cells by α-galactosylceramide impairs DNA vaccine-induced protective immunity against Trypanosoma crusi. Infect Immun 2003; 71:123441.
  • 22
    Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ. Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect Immun 2005; 73:18192.
  • 23
    Smyth MJ, Thia KYT, Street SEA et al. Different tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000; 191:6618.
  • 24
    Akbari O, Stock P, Meyer E et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 2003; 9:5828.
  • 25
    Miyake S, Yamamura T. NKT cells and autoimmune diseases: unraveling the complexity. Curr Top Miocrobiol Immunol 2007; 314:25167.
  • 26
    Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG, Hansson GK, Berne GP. CD1d-dependent activation of NKT cells aggravated atherosclerosis. J Exp Med 2004; 199:41722.
  • 27
    Nakai Y, Iwabuchi K, Fujii S et al. Natural killer T cells accelerate atherogenesis in mice. Blood 2004; 104:20519.
  • 28
    Major AS, Wilson MT, McCaleb JL et al. Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2004; 24:23517.
  • 29
    Aslanian AM, Chapman HA, Charo IF. Transient role for CD1d-restricted natural killer T cells in the formation of arherosclerotic lesions. Arterioscler Thromb Vasc Biol 2005; 25:62832.
  • 30
    Bendelac A, Hunziker RD, Lantz O. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J Exp Med 1996; 184:128593.
  • 31
    Exley MA, Bigley NJ, Cheng O et al. Innate immune response to encephalomyocarditis virus infection mediated by CD1d. Immunology 2003; 110:51926.
  • 32
    Gumperz JE, Roy C, Makowska A et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 2000; 12:21121.
  • 33
    Crowe NY, Uldrich AP, Kyparissoudis K et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol 2003; 171:40207.
  • 34
    Wilson MT, Johanson C, Olivares-Villagómez D, Singh AK, Stanic AK, Wang CR, Joyce S, Van Kaer L. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci USA 2003; 100:109138.
  • 35
    Harada M, Seino K, Wakao H et al. Down-regulation of the invariant Vα14 antigen receptor in NKT cells upon activation. Int Immunol 2004; 16:2417.
  • 36
    Parekh VV, Wilson MT, Olivares-Villagómez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 2005; 115:257283.
  • 37
    Uldrich AP, Crowe NY, Kyparissoudis K et al. NKT cell stimulation with glicolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 2005; 175:30923101.
  • 38
    Kim S, Lalani S, Parekh VV, Vincent TL, Wu L, Van Kaer L. Impact of bacteria on the phenotype, function and therapeutic activities of invariant NKT cells in mice. J Clin Invest 2008; 118:230115.
  • 39
    Matsuda JL, Gapin L, Fazilleau N, Warren K, Naidenko OV, Kronenberg M. Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor β repertoire and small clone size. Proc Natl Acad Sci USA 2001; 98:1263641.
  • 40
    Wei D, Curran SA, Savage PB, Teyton L, Bendelac A. Mechanisms imposing the Vβ bias of Vα14 natural killer T cells and consequences for microbial glycolipid recognition. J Exp Med 2006; 203:1197207.
  • 41
    Hegde S, Chen X, Keaton JM, Reddington F, Besra GS, Gumperz JE. NKT cells direct monocytes into a DC differentiation pathway. J Leukoc Biol 2007; 81:122435.
  • 42
    Michel ML, Keller AC, Paget C et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J Exp Med 2007; 204:9951001.
  • 43
    Rachitskaya AV, Hansen AH, Horai R, Li Z, Villasmil R, Luger D, Nussenblatt RB, Caspi RR. NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J Immunol 2008; 180:516771.
  • 44
    Coquet JM, Chakravarti S, Kyparissoudis K et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4NK1.1 NKT cell population. Proc Natl Acad Sci U S A 2008; 105:1128792.
  • 45
    Gadue P, Stein PL. NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J Immunol 2002; 169:2397406.
  • 46
    Yang Y, Ueno A, Bao M, Wang Z, Im JS, Porcelli S, Yoon JW. Control of NKT cell differentiation by tissue-specific microenvironments. J Immunol 2003; 171:591320.
  • 47
    Pellicci DG, Hammond KJL, Coquet J et al. DX5/CD49b-positive T cells are not synonymous with CD1d-dependent NKT cells. J Immunol 2005; 175:441625.
  • 48
    Maeda M, Lohwasser S, Yamamura T, Takei F. Regulation of NKT cells by Ly49: analysis of primary NKT cells and generation of NKT cell line. J Immunol 2001; 167:41806.
  • 49
    Molling JW, Moreno M, Van Der Vliet HJ, Von Blomberg BM, Van Den Eertwegh AJ, Scheper RJ, Bontkes HJ. Generation and sustained expansion of mouse spleen invariant NKT cell lines with preserved cytokine releasing capacity. J Immunol Methods 2007; 322:7081.
  • 50
    Shümann J, Voyle RB, Wei BY, MacDonald HR. Influence of the TCR Vβ domain on the avidity of CD1d:α-galactosylceramide binding by invariant Va14 NKT cells. J Immunol 2003; 170:58159.
  • 51
    Baev DV, Peng X, Song L et al. Distinct homeostatic requirements of CD4+ and CD4− subsets of Vα24-invariant natural killer T cells in humans. Blood 2004; 104:41506.