• 1
    World Health Organization. Report. Global Tuberculosis Control-Surveillance, Planning, Financing. WHO/HTM/TB/2008.393. Geneva, Switzerland: WHO, 2008.
  • 2
    Colditz GA, Berkey CS, Mosteller F, Brewer TF, Wilson ME, Burdick E, Fineberg HV. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994; 271:698702.
  • 3
    Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol 2001; 19:93129.
  • 4
    Russell DG. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev 2011; 240:25268.
  • 5
    Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med 1998; 157:67991.
  • 6
    Jo EK, Yang CS, Choi CH, Harding CV. Intracellular signaling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 2007; 9:108798.
  • 7
    Brightbill HD, Libraty DH, Krutzik SR et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999; 285:7326.
  • 8
    Noss EH, Pai RK, Sellati TJ, Radolf JD, Belisle J, Golenbock DT, Boom WH, Harding CV. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J Immunol 2001; 167:9108.
  • 9
    Nair S, Ramaswamy PA, Ghosh S et al. The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J Immunol 2009; 183:626981.
  • 10
    Jung SB, Yang CS, Lee JS et al. The mycobacterial 38-kilodalton glycoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect Immun 2006; 74:268696.
  • 11
    Basu S, Pathak SK, Banerjee A et al. Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated toll-like receptor 2-dependent release of tumor necrosis factor-α. J Biol Chem 2007; 282:103950.
  • 12
    Bansal K, Elluru SR, Narayana Y, Chaturvedi R, Patil SA, Kaveri SV, Bayry J, Balaji KN. PE_PGERS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. J Immunol 2010; 184:3495504.
  • 13
    Quesniaux V, Nicolle DM, Torres D et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J Immunol 2004; 172:442534.
  • 14
    Sweet L, Schorey JS. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol 2006; 80:41523.
  • 15
    Kwon YM, Jung KH, Choi GE et al. Identification and diagnostic utility of serologic reactive antigens from Mycobacterium tuberculosis sonic extracts. J Bacteriol Virol 2009; 39:32936.
  • 16
    Kitaura H, Kinomoto M, Yamada T. Ribosomal protein L7 included in tuberculin purified protein derivative (PPD) is a major heat-resistant protein inducing strong delayed-type hypersensitivity. Scand J Immunol 1999; 50:5807.
  • 17
    Bahk YY, Kim SA, Kim JS, Euh HJ, Bai GH, Cho SN, Kim YS. Antigens secreted from Mycobacterium tuberculosis identification by proteomic approach and test for diagnostic marker. Proteomics 2004; 4:3299307.
  • 18
    Kim SJ, Bai GH, Lee H, Kim HJ, Lew WJ, Park YK, Kim Y. Transmission of Mycobacterium tuberculosis among high school students in Korea. Int J Tuberc Lung Dis 2001; 5:82430.
  • 19
    Gregory RL. Microbial ribosomal vaccines. Rev Infect Dis 1986; 8:20817.
  • 20
    Pregliasco F, Terracciano L, Marcassa S, Zava D, Anselmi G. Rationale for the clinical use of a ribosome-components immune modulator. Allergy Asthma Proc 2009; 30(Suppl 1):S512.
  • 21
    Lim JH, Park JK, Jo EK, Song CH, Min D, Song YJ, Kim HJ. Purification and immunoreactivity of three components from the 30/32-kilodalton antigen 85 complex in Mycobacterium tuberculosis. Infect Immun 1999; 67:618790.
  • 22
    Song CH, Lee JS, Lee SU, Lim K, Kim HJ, Park JK, Paik TH, Jo EK. Role of mitogen-activated protein kinase pathways in the production of tumor necrosis factor-a, interleukin-10, and monocyte chemotactic protein-1 by Mycobacterium tuberculosis H37Rv-infected human monocytes. J Clin Immunol 2003; 23:194201.
  • 23
    Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev 1992; 56:64861.
  • 24
    Majumder N, Bhattacharjee S, Bhattacharyya Majumdar S, Dey R, Guha P, Pal NK, Majumdar S. Restoration of impaired free radical generation and inflammatory cytokines by MCP-1 in mycobacterial pathogenesis. Scand J Immunol 2008; 67:32939.
  • 25
    Bean AG, Roach DR, Briscoe H, France MP, Korner H, Sedgwick JD, Britton WJ. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J Immunol 1999; 162:350411.
  • 26
    Roach DR, Bean AG, Demangel C, France MP, Briscoe H, Britton WJ. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 2002; 168:46207.
  • 27
    Fietta AM, Morosini M, Meloni F, Bianco AM, Pozzi E. Pharmacological analysis of signal transduction pathways required for Mycobacterium tuberculosis-induced IL-8 and MCP-1 production in human peripheral monocytes. Cytokines 2002; 19:2429.
  • 28
    Maiti D, Bhattacharyya A, Basu J. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2001; 276:32933.
  • 29
    Yang CS, Song CH, Lee JS et al. Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages. Cell Microbiol 2006; 8:115871.
  • 30
    Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999; 163:39207.
  • 31
    Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 2010; 8:296307.
  • 32
    Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, Arditi M. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 2005; 280:209617.
  • 33
    Bashir N, Kounsar F, Mukhopadhyay S, Hasnain SE. Mycobacterium tuberculosis conserved hypothetical protein rRv2626c modulates macrophage effector function. Immunology 2010; 130:3445.