SEARCH

SEARCH BY CITATION

References

  • 1
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 1998; 95:657883.
  • 2
    Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010; 140:85970.
  • 3
    Pickard JM, Chervonsky AV. Sampling of the intestinal microbiota by epithelial M cells. Curr Gastroenterol Rep 2010; 12:3319.
  • 4
    Bockman DE, Cooper MD. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer’s patches. An electron microscopic study. Am J Anat 1973; 136:45577.
  • 5
    Owen RL, Jones AL. Epithelial cell specialization within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 1974; 66:189203.
  • 6
    Neutra MR, Phillips TL, Mayer EL, Fishkind DJ. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer’s patch. Cell Tissue Res 1987; 247:53746.
  • 7
    Miller H, Zhang J, Kuolee R, Patel GB, Chen W. Intestinal M cells: the fallible sentinels? World J Gastroenterol 2007; 13:147786.
  • 8
    Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303:16625.
  • 9
    Berg RD, Garlington AW. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun 1979; 23:40311.
  • 10
    Kerneis S, Bogdanova A, Kraehenbuhl J-P, Pringault E. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 1997; 277:94952.
  • 11
    Gullberg E, Leonard M, Karlsson J, Hopkins AM, Brayden D, Baird AW, Artursson P. Expression of specific markers and particle transport in a new human intestinal M-Cell model. Biochem Biophys Res Commun 2000; 279:80813.
  • 12
    Chang WL, van der Heyde HC, Klein BS. Flow cytometric quantitation of yeast a novel technique for use in animal model work and in vitro immunologic assays. J Immunol Methods 1998; 211:5163.
  • 13
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001; 25:4028.
  • 14
    Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics 2002; 18:2078.
  • 15
    Cashman SB, Morgan JG. Transcriptional analysis of Toll-like receptors expression in M cells. Mol Immunol 2009; 47:36572.
  • 16
    Oliveros JC. VENNY. An interactive tool for comparing lists with venn diagrams. 2007.
  • 17
    Wang J, Lopez-Fraga M, Rynko A, Lo DD. TNFR and LTβR agonists induce follicle-associated epithelium and M cell specific genes in rat and human intestinal epithelial cells. Cytokine 2009; 47:6976.
  • 18
    Lo D, Tynan W, Dickerson J et al. Cell culture modeling of specialized tissue: identification of genes expressed specifically by follicle-associated epithelium of Peyer’s patch by expression profiling of Caco-2/Raji co-cultures. Int Immunol 2004; 16:919.
  • 19
    Izadpanah A, Dwinell MB, Eckmann L, Varki NM, Kagnoff MF. Regulated MIP-3α/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am J Physiol Gastrointest Liver Physiol 2001; 280:G7109.
  • 20
    Fujimura Y. Functional morphology of microfold cells (M cells) in Peyer’s patches – phagocytosis and transport of BCG by M cells into rabbit Peyer’s patches. Gastroenterol Jpn 1986; 21:32535.
  • 21
    Jang MH, Kweon M-N, Iwatani K et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 2004; 101:61105.
  • 22
    Obata T, Goto Y, Kunisawa J et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A 2010; 107:741924.
  • 23
    Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998; 180:476574.
  • 24
    Steffen EK, Berg RD, Deitch EA. Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis 1988; 157:10328.
  • 25
    Autenrieth IB, Firsching R. Penetration of M cells and destruction of Peyer’s patches by Yersinia enterocolitica: an ultrastructural and histological study. J Med Microbiol 1996; 44:28594.
  • 26
    Hase K, Kawano K, Nochi T et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 2009; 462:22630.
  • 27
    Wolf J, Rubin D, Finberg R, Kauffman R, Sharpe A, Trier J, Fields B. Intestinal M cells: a pathway for entry of reovirus into the host. Science 1981; 212:4712.
  • 28
    Helander A, Silvey KJ, Mantis NJ, Hutchings AB, Chandran K, Lucas WT, Nibert ML, Neutra MR. The viral σ1 protein and glycoconjugates containing α2-3-linked sialic acid are involved in type 1 reovirus adherence to M cell apical surfaces. J Virol 2003; 77:796477.
  • 29
    Chassaing B, Rolhion N, Vallée AD et al. Crohn disease-associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Investig 2011; 121:96675.
  • 30
    Tatebe K, Zeytun A, Ribeiro R, Hoffmann R, Harrod K, Forst C. Response network analysis of differential gene expression in human epithelial lung cells during avian influenza infections. BMC Bioinformatics 2010; 11:170.
  • 31
    Mayer H, Bilban M, Kurtev V, Gruber F, Wagner O, Binder BR, de Martin R. Deciphering regulatory patterns of inflammatory gene expression from interleukin-1-stimulated human endothelial cells. Arterioscler Thromb Vasc Biol 2004; 24:11928.
  • 32
    Becker JAJ, Mirjolet J-F, Bernard J, Burgeon E, Simons M-J, Vassart G, Parmentier M, Libert F. Activation of GPR54 promotes cell cycle arrest and apoptosis of human tumor cells through a specific transcriptional program not shared by other Gq-coupled receptors. Biochem Biophys Res Commun 2005; 326:67786.
  • 33
    Geiser T, Dewald B, Ehrengruber MU, Clark-Lewis I, Baggiolini M. The interleukin-8-related chemotactic cytokines GROα, GROβ, and GROγ activate human neutrophil and basophil leukocytes. J Biol Chem 1993; 268:1541924.
  • 34
    Wolpe SD, Sherry B, Juers D, Davatelis G, Yurt RW, Cerami A. Identification and characterization of macrophage inflammatory protein 2. Proc NatL Acad Sci U S A 1989; 86:6126.
  • 35
    Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci U S A 1987; 84:92337.
  • 36
    Rydström A, Wick MJ. Monocyte and neutrophil recruitment during oral Salmonella infection is driven by MyD88-derived chemokines. Eur J Immunol 2009; 39:301930.
  • 37
    Yamazaki S, Muta T, Takeshige K. A novel IκB protein, IκB-ζ, induced by proinflammatory stimuli, negatively regulates nuclear factor-κB in the nuclei. J Biol Chem 2001; 276:2765762.
  • 38
    Haskill S, Beg AA, Tompkins SM et al. Characterization of an immediate-early gene induced in adherent monocytes that encodes IκB-like activity. Cell 1991; 65:12819.
  • 39
    Wertz IE, O’Rourke KM, Zhou H et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 2004; 430:6949.
  • 40
    Kitamura H, Kanehira K, Okita K, Morimatsu M, Saito M. MAIL, a novel nuclear IκB protein that potentiates LPS-induced IL-6 production. FEBS Lett 2000; 485:536.
  • 41
    Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ. An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 2009; 37:4587602.
  • 42
    Alexopoulou AN, Leao M, Caballero OL et al. Dissecting the transcriptional networks underlying breast cancer: NR4A1 reduces the migration of normal and breast cancer cell lines. Breast Cancer Res 2010; 12:R51.
  • 43
    Hase K, Ohshima S, Kawano K, Hashimoto N, Matsumoto K, Saito H, Ohno H. Distinct gene expression profiles characterize cellular phenotypes of follicle-associated epithelium and M cells. DNA Res 2005; 12:12737.
  • 44
    Royer PJ, Emara M, Yang C et al. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol 2010; 185:152231.
  • 45
    Davis BK, Roberts RA, Huang MT et al. Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 2011; 186:13337.