• GPRDIH1;
  • GPRDIH2;
  • Drosophila CG12370;
  • insect diuresis;
  • Culex quinquefasciatus


In the mosquito Aedes aegypti (L.), the molecular endocrine mechanisms underlying rapid water elimination upon eclosion and blood feeding are not fully understood. The genome contains a single predicted diuretic hormone 44 (DH44) gene, but two DH44 receptor genes. The identity of the DH44 receptor(s) in the Malpighian tubule is unknown in any mosquito species. We show that VectorBase gene ID AAEL008292 encodes the DH44 receptor (GPRDIH1) most highly expressed in Malpighian tubules. Sequence analysis and transcript localization indicate that AaegGPRDIH1 is the co-orthologue of the Drosophila melanogaster DH44 receptor (CG12370-PA). Time-course quantitative PCR analysis of Malpighian tubule cDNA revealed AaegGPRDIH1 expression changes paralleling periods of excretion. This suggests that target tissue receptor biology is linked to the known periods of release of diuretic hormones from the nervous system pointing to a common up-stream regulatory mechanism.