SEARCH

SEARCH BY CITATION

References

  • Abt, M. and Rivers, D.B. (2007) Characterization of phenoloxidase activity in venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). J Invertebr Pathol 94: 108118.
  • Amaya, K.E., Asgari, S., Jung, R., Hongskula, M. and Beckage, N.E. (2005) Parasitization of Manduca sexta larvae by the parasitoid wasp Cotesia congregata induces an impaired host immune response. J Insect Physiol 51: 505512.
  • Asgari, S., Zhang, G., Zareie, R. and Schmidt, O. (2003a) A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochem Mol Biol 33: 10171024.
  • Asgari, S., Zhang, G.M. and Schmidt, O. (2003b) Polydnavirus particle proteins with similarities to molecular chaperones, heat-shock protein 70 and calreticulin. J Gen Virol 84: 11651171.
  • Barrett, A.J., Rawlings, N.D. and O'Brien, E.A. (2001) The MEROPS database as a protease information system. J Struct Biol 134: 95102.
  • Beck, M.H. and Strand, M.R. (2007) A novel polydnavirus protein inhibits the insect prophenoloxidase activation pathway. Proc Natl Acad Sci USA 104: 1926719272.
  • Bendtsen, J.D., Nielsen, H., Von Heijne, G. and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783795.
  • Bilej, M., De Baetselier, P., Van Dijck, E., Stijlemans, B., Colige, A. and Beschin, A. (2001) Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J Biol Chem 276: 4584045847.
  • Bridges, A.R. and Owen, M.D. (2005) The morphology of the honey bee (Apis mellifera L.) venom gland and reservoir. J Morphol 181: 6986.
  • Cônsoli, F.L., Tian, H.S., Vinson, S.B. and Coates, C.J. (2004) Differential gene expression during wing morph differentiation of the ectoparasitoid Melittobia digitata (Hym., Eulophidae). Comp Biochem Physiol A Mol Integr Physiol 138: 229239.
  • Cônsoli, F.L., Lewis, D., Keeley, L. and Vinson, S.B. (2007) Characterization of a cDNA encoding a putative chitinase from teratocytes of the endoparasitoid Toxoneuron nigriceps. Entomol Exp Appl 122: 271278.
  • Crawford, A.M., Brauning, R., Smolenski, G., Ferguson, C., Barton, D., Wheeler, T.T. et al. (2008) The constituents of Microctonus sp. parasitoid venoms. Insect Mol Biol 17: 313324.
  • Dani, M.P., Richards, E.H., Isaac, R.E. and Edwards, J.P. (2003) Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). J Insect Physiol 49: 945954.
  • Dani, M.P., Edwards, J.P. and Richards, E.H. (2005) Hydrolase activity in the venom of the pupal endoparasitic wasp, Pimpla hypochondriaca. Comp Biochem Physiol B Biochem Mol Biol 141: 373381.
  • Dantuma, N.P., Potters, M., De Winther, M.P.J., Tensen, C.P., Kooiman, F.P., Bogerd, J. et al. (1999) An insect homolog of the vertebrate very low density lipoprotein receptor mediates endocytosis of lipophorins. J Lipid Res 40: 973978.
  • Diez-Roux, G. and Ballabio, A. (2005) Sulfatases and human disease. Annu Rev Genomics Hum Genet 6: 355379.
  • Elvin, C.M., Vuocolo, T., Pearson, R.D., East, I.J., Riding, G.A., Eisemann, C.H. et al. (1996) Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina cDNA and deduced amino acid sequences. J Biol Chem 271: 89258935.
  • Emanuelsson, O., Søren Brunak, S., Von Heijne, G. and Henrik Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2: 953971.
  • Falabella, P., Riviello, L., Caccialupi, P., Rossodivita, T., Teresa Valente, M., Luisa De Stradis, M. et al. (2007) A gamma-glutamyl transpeptidase of Aphidius ervi venom induces apoptosis in the ovaries of host aphids. Insect Biochem Mol Biol 37: 453465.
  • Fang, J., Han, Q. and Li, J. (2002) Isolation, characterization, and functional expression of kynurenine aminotransferase cDNA from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 32: 943950.
  • Faudry, E., Santana, J.M., Ebel, C., Vernet, T. and Teixeira, A.R.L. (2006) Salivary apyrases of Triatoma infestans are assembled into homo-oligomers. Biochem J 396: 509515.
  • Francischetti, I.M., Mather, T.N. and Ribeiro, J.M. (2003) Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem Biophys Res Commun 305: 869875.
  • Friedrich, T., Kroger, B., Bialojan, S., Lemaire, H.G., Hoffken, H.W., Reuschenbach, P. et al. (1993) A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J Biol Chem 268: 1621616222.
  • Garbe, J.C., Yang, E. and Fristrom, J.W. (1993) IMP-L2: an essential secreted immunoglobulin family member implicated in neural and ectodermal development in Drosophila. Development 119: 12371250.
  • Gaspari, Z., Patthy, A., Graf, L. and Perczel, A. (2002) Comparative structure analysis of proteinase inhibitors from the desert locust, Schistocerca gregaria. Eur J Biochem 269: 527537.
  • Geer, L.Y., Domrachev, M., Lipman, D.J. and Bryant, S.H. (2002) CDART: protein homology by domain architecture. Genome Res 12 (10): 16191623.
  • Georgatsos, J.G. and Laskowski, M. (1962) Purification of an endonuclease from the venom of Bothrops atrox. Biochemistry 1: 288295.
  • Gopaul, D.N., Meyer, S.L., Degano, M., Sacchettini, J.C. and Schramm, V.L. (1996) Inosine-uridine nucleoside hydrolase from Crithidia fasciculata. Genetic characterization, crystallization, and identification of histidine 241 as a catalytic site residue. Biochemistry 35: 59635970.
  • De Graaf, D.C., Aerts, M., Danneels, E. and Devreese, B. (2009) Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteom 72: 145154.
  • De Graaf, D.C., Brunain, M., Scharlaken, B., Peiren, N., Devreese, B., Ebo, D.G. et al. (2010) Two novel proteins expressed by the venom glands of Apis mellifera and Nasonia vitripennis share an ancient C1q-like domain. Insect Mol Biol 19 (Suppl. 1): 110.
  • Grunwald, T., Bockisch, B., Spillner, E., Ring, J., Bredehorst, R. and Ollert, M.W. (2006) Molecular cloning and expression in insect cells of honeybee venom allergen acid phosphatase (Api m 3). J Allergy Clin Immunol 117: 848854.
  • Hati, R., Mitra, P., Sarker, S. and Bhattacharyya, K.K. (1999) Snake venom hemorrhagins. Crit Rev Toxicol 29: 119.
  • Heisterkamp, N., Groffen, J., Warburton, D. and Sneddon, T.P. (2008) The human gamma-glutamyltransferase gene family. Hum Genet 123: 321332.
  • Henriksen, A., King, T.P., Mirza, O., Monsalve, R.I., Meno, K., Ipsen, H. et al. (2001) Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins 45: 438448.
  • Hoffman, D.R. (2006) Hymenoptera venom allergens. Clin Rev Allergy Immunol 30: 109128.
  • Honegger, B., Galic, M., Köhler, K., Wittwer, F., Brogiolo, W., Itafen, E. et al. (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7: 10.
  • Hwang, B.Y., Cho, B.K., Yun, H., Koteshwar, K. and Kim, B.G. (2005) Revisit of aminotransferase in the genomic era and its application to biocatalysis. J Mol Catal B Enzym 37: 4755.
  • Jang, I.H., Nam, H.J. and Lee, W.J. (2008) CLIP-domain serine proteases in Drosophila innate immunity. BMB Rep 41: 102107.
  • Jia, L.G., Shimokawa, K., Bjarnason, J.B. and Fox, J.W. (1996) Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon 34: 12691276.
  • Jones, D., Sawicki, G. and Wozniak, M. (1992) Sequence, structure, and expression of a wasp venom protein with a negatively charged signal peptide and a novel repeating internal structure. J Biol Chem 267: 1487114878.
  • Kim, Y.S., Ryu, J.H., Han, S.J., Choi, K.H., Nam, K.B., Jang, I.H. et al. (2000) Gram-negative bacterial-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J Biol Chem 275: 3272132727.
  • King, P.E. and Ratcliffe, N.A. (1969) The structure and possible mode of functioning of the female reproductive system in Nasonia vitripennis (Hymenoptera: Pteromalidae). J Zool 157: 319344.
  • Kreil, L., Haiml, L. and Suchanek, G. (1980) Stepwise cleavage of the pro part of promelittin by dipeptidylpeptidase-IV – evidence for a new type of precusor-product conversion. Eur J Biochem 111: 4958.
  • Krishnan, A., Nair, P.N. and Jones, D. (1994) Isolation, cloning, and characterization of new chitinase stored in active form in chitin-lined venom reservoir. J Biol Chem 269: 2097120976.
  • Li, H.L., Zhang, Y.L., Gao, Q.K., Cheng, J.A. and Lou, B.G. (2008) Molecular identification of cDNA, immunolocalization, and expression of a putative odorant-binding protein from an Asian honey bee, Apis cerana cerana. J Chem Ecol 34: 15931601.
  • Lovato, D.V., Nicolau de Campos, I.T., Amino, R. and Tanaka, A.S. (2006) The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 88: 673681.
  • Matsui, T., Fujimura, Y. and Titani, K. (2000) Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 1477: 146156.
  • Matsunaga, Y., Yamazaki, Y., Hyodo, F., Sugiyama, Y., Nozaki, M. and Morita, T. (2009) Structural divergence of cysteine-rich secretory proteins in snake venoms. J Biochem 145: 365375.
  • Moreau, S.J.M., Cherqui, A., Doury, G., Dubois, F., Fourdrain, Y., Sabatier, L. et al. (2004) Identification of an aspartylglucosaminidase-like protein in the venom of the parasitic wasp Asobara tabida (Hymenoptera: Braconidae). Insect Biochem Mol Biol 34: 485492.
  • Morrissette, J., Kratzschmar, J., Haendler, B., Elhayek, R., Mochcamorales, J., Martin, B.M. et al. (1995) Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors. Biophys J 68: 22802288.
  • Natzle, J.E., Hammonds, A.S. and Fristrom, J.W. (1986) Isolation of genes active during hormone-induced morphogenesis in Drosophila imaginal discs. J Biol Chem 261: 55755583.
  • Neeman, I., Calton, G.J. and Burnett, J.W. (1980) Purification and characterization of the endonuclease present in Physalia physalis venom. Comp Biochem Physiol B Biochem Mol Biol 67: 155158.
  • Neeman, I., Calton, G.J. and Burnett, J.W. (1981) Purification of an endonuclease present in Chrysaora quinquecirrha venom. Proc Soc Exp Biol Med 166: 374382.
  • Nirmala, X., Kodrík, D., Urovec, M. and Sehnal, F. (2001) Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor. Eur J Biochem 268: 10641073.
  • Nok, A.J., Abubakar, M.S., Adaudi, A. and Balogun, E. (2003) Aryl sulfatase from Naja nigricolis venom: characterization and possible contribution in the pathology of snake poisoning. J Biochem Mol Toxicol 17: 5966.
  • Ondetti, M.A. and Cushman, D.W. (1982) Enzymes of the renin-angiotensin system and their inhibitors. Annu Rev Biochem 51: 283308.
  • Page, M.J. and Di Cera, E. (2008) Evolution of peptidase diversity. J Biol Chem 283: 3001030014.
  • Parkinson, N., Smith, I., Weaver, R. and Edwards, J.P. (2001) A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem Mol Biol 31: 5763.
  • Parkinson, N., Richards, E.H., Conyers, C., Smith, I. and Edwards, J.P. (2002a) Analysis of venom constituents from the parasitoid wasp Pimpla hypochondriaca and cloning of a cDNA encoding a venom protein. Insect Biochem Mol Biol 32: 729735.
  • Parkinson, N., Conyers, C. and Smith, I. (2002b) A venom protein from the endoparasitoid wasp Pimpla hypochondriaca is similar to snake venom reprolysin-type metalloproteases. J Invertebr Pathol 79: 129131.
  • Parkinson, N., Smith, I., Audsley, N. and Edwards, J.P. (2002c) Purification of pimplin, a paralytic heterodimeric polypeptide from venom of the parasitoid wasp Pimpla hypochondriaca, and cloning of the cDNA encoding one of the subunits. Insect Biochem Mol Biol 32: 17691773.
  • Parkinson, N.M. and Weaver, R.J. (1999) Noxious components of venom from the pupa-specific parasitoid Pimpla hypochondriaca. J Invertebr Pathol 73: 7483.
  • Parkinson, N.M., Conyers, C.M., Keen, J.N., MacNicoll, A.D., Smith, I. and Weaver, R.J. (2003) cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comp Biochem Physiol C Toxicol Pharmacol 134: 513520.
  • Parkinson, N.M., Conyers, C., Keen, J., MacNicoll, A., Smith, I., Audsley, N. et al. (2004) Towards a comprehensive view of the primary structure of venom proteins from the parasitoid wasp Pimpla hypochondriaca. Insect Biochem Mol Biol 34: 565571.
  • Peiren, N., Vanrobaeys, F., De Graaf, D.C., Devreese, B., Van Beeumen, J. and Jacobs, F.J. (2005) The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta 1752: 15.
  • Peiren, N., De Graaf, D.C., Brunain, M., Bridts, C.H., Ebo, D.G., Stevens, W.J. et al. (2006) Molecular cloning and expression of icarapin, a novel IgE-binding bee venom protein. FEBS Lett 580: 48954899.
  • Peiren, N., De Graaf, D.C., Vanrobaeys, F., Danneel, E.L., Devreese, B., Van Beeumen, J. et al. (2008) Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon 52: 7283.
  • Pelosi, P. (1996) Perireceptor events in olfaction. J Neurobiol 30: 319.
  • Pelosi, P. and Maida, R. (1995) Odorant-binding proteins in insects. Comp Biochem Physiol B Biochem Mol Biol 111: 503514.
  • Price, D.R.G., Bell, H.A., Hinchliffe, G., Fitches, E., Weaver, R. and Gatehouse, J.A. (2009) A venom metalloproteinase from the parasitic wasp Eulophus pennicornis is toxic towards its host, tomato moth (Lacanobia oleracae). Insect Mol Biol 18: 195202.
  • Rana, R.L., Dahlman, D.L. and Webb, B.A. (2002) Expression and characterization of a novel teratocyte protein of the braconid, Microplitis croceipes (Cresson). Insect Biochem Mol Biol 32: 15071516.
  • Ratcliffe, N.A. and King, P.E. (1969) Morphological, ultrastructural, histochemical and electrophoretic studies on the venom system of Nasonia vitripennis Walker (Hymenoptera: Pteromalidae). J Morphol 127: 177203.
  • Rawlings, N.D. and Barrett, A.J. (1995) Evolutionary families of metallopeptidases. Methods Enzymol 248: 183228.
  • Rawlings, N.D., Tolle, D.P. and Barrett, A.J. (2004) Evolutionary families of peptidase inhibitors. Biochem J 378: 705716.
  • Reidegeld, K.A., Eisenacher, M., Kohl, M., Chamrad, D., Korting, G., Blueggel, M. et al. (2008) An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. Proteomics 2008: 11291137.
  • Rivers, D.B. and Denlinger, D.L. (1994) Developmental fate of the flesh fly, Sarcophaga bullata, envenomated by the pupal ectoparasitoid, Nasonia vitripennis. J Insect Physiol 40: 121127.
  • Rivers, D.B. and Denlinger, D.L. (1995) Venom-induced alterations in fly lipid-metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera, Pteromalidae). J Invertebr Pathol 66: 104110.
  • Rivers, D.B., Hink, W.F. and Denlinger, D.L. (1993) Toxicity of the venom from Nasonia vitripennis (Hymenoptera: Pteromalidae) toward fly hosts, nontarget insects, different developmental stages, and cultured insect cells. Toxicon 31: 755765.
  • Rivers, D.B., Genco, M. and Sanchez, R.A. (1999) In vitro analysis of venom from the wasp Nasonia vitripennis: susceptibility of different cell lines and venom-induced changes in plasma membrane permeability. In Vitro Cell Dev Biol Anim 35: 102110.
  • Rivers, D.B., Rocco, M.M. and Frayha, A.R. (2002a) Venom from the ectoparasitic wasp Nasonia vitripennis increases Na+ influx and activates phospholipase C and phospholipase A2 dependent signal transduction pathways in cultured insect cells. Toxicon 40: 921.
  • Rivers, D.B., Ruggiero, L. and Hayes, M. (2002b) The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker (Diptera: Sarcophagidae). J Insect Physiol 48: 10531064.
  • Rivers, D.B., Zdarek, J. and Denlinger, D.L. (2004) Disruption of pupariation and eclosion behavior in the flesh fly, Sarcophaga bullata Parker (Diptera: Sarcophagidae), by venom from the ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Arch Insect Biochem Physiol 57: 7891.
  • Rivers, D.B., Crawley, T. and Bauser, H. (2005) Localization of intracellular calcium release in cells injured by venom from the ectoparasitoid Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) and dependence of calcium mobilization on G-protein activation. J Insect Physiol 51: 149160.
  • Rivers, D.B., Uckan, F. and Ergin, E. (2006) Characterization and biochemical analyses of venom from the ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae). Arch Insect Biochem Physiol 61: 2441.
  • Sales, P.B.V. and Santoro, M.L. (2008) Nucleotidase and DNase activities in Brazilian snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 147: 8595.
  • Schlott, B., Wöhnert, J., Icke, C., Hartmann, M., Ramachandran, R., Gührs, K.H. et al. (2002) Interaction of Kazal-type inhibitor domains with serine proteinases: biochemical and structural studies. J Mol Biol 318: 533546.
  • Suderman, R.J., Dittmer, N.T., Kanost, M.R. and Kramer, K.J. (2006) Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Insect Biochem Mol Biol 36: 353365.
  • Tatusova, T.A. and Madden, T.L. (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174: 247250.
  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 46734680.
  • Ulmer, A.J., Mattern, T., Feller, A.C., Heymann, E. and Flad, H.D. (1990) CD26 Antigen is a surface dipeptidyl peptidase IV (DPPIV) as characterized by monoclonal antibodies clone Til-19-4-7 and 4EL1C7. Scand J Immunol 31: 429435.
  • Vanrobaeys, F., Van Coster, R., Dhondt, G., Devreese, B. and Van Beeumen, J. (2005) Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. J Proteome Res 4: 22832293.
  • Yamamoto, T., Arimoto, H., Kinumi, T., Oba, Y. and Uemura, D. (2007) Identification of proteins from venom of the paralytic spider wasp, Cyphononyx dorsalis. Insect Biochem Mol Biol 37: 278286.
  • Yuan, C.H., He, Q.Y., Peng, K., Diao, J.B., Jiang, L.P., Tang, X. et al. (2008) Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE 3: e3414.
  • Zera, A.J., Sanger, T., Hanes, J. and Harshman, L. (2002) Purification and characterization of hemolymph juvenile hormone esterase from the cricket, Gryllus assimilis. Arch Insect Biochem Physiol 49: 4155.
  • Zhang, G., Schmidt, O. and Asgari, S. (2006) A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev Comp Immunol 30: 756764.
  • Zhang, G.M., Lu, Z.Q., Jiang, H.B. and Asgari, S. (2004) Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem Mol Biol 34: 477483.
  • Zheng, Q.L., Chen, J., Nie, Z.M., Lv, Z.B., Wang, D. and Zhang, Y.Z. (2007) Expression, purification and characterization of a three-domain Kazal-type inhibitor from silkworm pupae (Bombyx mori). Comp Biochem Physiol B Biochem Mol Biol 146: 234240.
  • Zhu, J.Y., Ye, G.Y. and Hu, C. (2008) Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Toxicon 51: 13911399.