SEARCH

SEARCH BY CITATION

References

  • Abascal, F., Zardoya, R. and Posada, D. (2005) Prottest: selection of best-fit models of protein evolution. Bioinformatics 21: 21042105.
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403410.
  • Arbuckle, M.I., Kane, S., Porter, L.M., Seatter, M.J. and Gould, G.W. (1996) Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: Expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Biochemistry 35: 1651916527.
  • Ashford, D.A., Smith, W.A. and Douglas, A.E. (2000) Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. J Insect Physiol 46: 335341.
  • Chintapalli, V.R., Wang, J. and Dow, J.A.T. (2007) Using FlyAtlas to identify better Drosophila models of human disease. Nat Genet 39: 715720.
  • Eddy, S.R. (1998) Profile hidden Markov models. Bioinformatics 14: 755763.
  • Garcia, J.C., Strube, M., Leingang, K., Keller, K., and Mueckler, M.M. (1992) Amino acid substitutions at Tryptophan-388 and Tryptophan-412 of the Hepg2 (GLUT1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. J Biol Chem 267: 77707776.
  • Gietz, R.D. and Woods, R.A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 8796.
  • Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/Nt. Nucleic Acids Symp Ser 41: 9598.
  • Hashiramoto, M., Kadowaki, T., Clark, A.E., Muraoka, A., Momomura, K., Sakura, H., Tobe, K., Akanuma, Y., Yazaki, Y., Holman, G.D. and Kasuga, M. (1992) Site-directed mutagenesis of Glut1 in helix 7 residue 282 results in perturbation of exofacial ligand binding. J Biol Chem 267: 1750217507.
  • Karley, A.J., Ashford, D.A., Minto, L.M., Pritchard, J. and Douglas, A.E. (2005) The significance of gut sucrase activity for osmoregulation in the pea aphid, Acyrthosiphon pisum. J Insect Physiol 51: 13131319.
  • Kikawada, T., Saito, A., Kanamori, Y., Nakahara, Y., Iwata, K.I., Tanaka, D. et al. (2007) Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci USA 104: 1158511590.
  • Kozak, M. (1991) Structural features in eukaryotic messenger-RNAs that modulate the initiation of translation. J Biol Chem 266: 1986719870.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.
  • Manolescu, A.R., Witkowska, K., Kinnaird, A., Cessford, T. and Cheeseman, C. (2007) Facilitated hexose transporters: new perspectives on form and function. Physiology 22: 234240.
  • Moriwaki, N., Matsushita, K., Nishina, M. and Kono, Y. (2003) High concentrations of trehalose in aphid hemolymph. Appl Entomol Zool 38: 241248.
  • Mueckler, M., Weng, W.F. and Kruse, M. (1994) Glutamine-161 of GLUT1 glucose transporter is critical for transport activity and exofacial ligand binding. J Biol Chem 269: 2053320538.
  • Mueckler, M. and Makepeace, C. (2004) Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. J Biol Chem 279: 1049410499.
  • Mueckler, M. and Makepeace, C. (2006) Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism. J Biol Chem 281: 3699336998.
  • Pao, S.S., Paulsen, I.T. and Saier, M.H. Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62: 134.
  • Pascual, J.M., Wang, D., Yang, R., Shi, L., Yang, H. and De Vivo, D.C. (2008) Structural signatures and membrane helix 4 in GLUT1 – inferences from human blood-brain glucose transport mutants. J Biol Chem 283: 1673216742.
  • Price, D.R.G., Wilkinson, H.S. and Gatehouse, J.A. (2007a) Functional expression and characterisation of a gut facilitative glucose transporter, NIHT1, from the phloem-feeding insect Nilaparvata lugens (rice brown planthopper). Insect Biochem Mol Biol 37: 11381148.
  • Price, D.R.G., Karley, A.J., Ashford, D.A., Isaacs, H.V., Pownall, M.E., Wilkinson, H.S. et al. (2007b) Molecular characterization of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum. Insect Biochem Mol Biol 37: 307317.
  • Prosser, W.A. and Douglas, A.E. (1992) A test of the hypotheses that nitrogen is upgraded and recycled in an aphid (Acyrthosiphon pisum) symbiosis. J Insect Physiol 38: 9399.
  • Rambaut, A. and Drummond, A.J. (2007) Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer .
  • Rentsch, D., Laloi, M., Rouhara, I., Schmelzer, E., Delrot, S. and Frommer, W.B. (1995) Ntr1 encodes a high-affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370: 264268.
  • Rhodes, J.D., Croghan, P.C. and Dixon, A.F.G. (1997) Dietary sucrose and oligosaccharide synthesis in relation to osmoregulation in the pea aphid, Acyrthosiphon pisum. Physiol Entomol 22: 373379.
  • Ronquist, F. and Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.
  • Sauer, N. and Stolz, J. (2000) Expression of foreign transport proteins in yeast. In Membrane Transport (Baldwin, S., ed.), pp. 79105. Oxford University Press, Oxford.
  • Seatter, M.J., De la Rue S.A., Porter L.M. and Gould G.W. (1998). QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Biochem. 37:13221326.
  • Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.
  • Tamori, Y., Hashiramoto, M., Clark, A.E., Mori, H., Muraoka, A., Kadowaki, T., Holman, G.D. and Kasuga, M. (1994) Substitution at Pro(385) of GLUT1 perturbs the glucose transport function by reducing conformational flexibility. J Biol Chem 269: 29822986.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 48764882.
  • Uldry, M. and Thorens, B. (2004) The SLC2 family of facilitated hexose and polyol transporters. Pflugers Archiv 447: 480489.
  • Ward, A., Sanderson, N.M., O'Reilly, J., Rutherford, N.G., Poolman, B. and Henderson, P.J.F. (2000) The amplified expression, identification, purification, assay and properties of hexahistidine-tagged bacterial membrane transport proteins. In Membrane Transport (Baldwin, S., ed.), pp. 141166. Oxford University Press, Oxford.
  • Whelan, S. and Goldman, N. (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691699.
  • Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C.P. and Boles, E. (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. Febs Lett 464: 123128.
  • Wright, E.M. and Loo, D.D. (2000) Coupling between Na+, sugar, and water transport across the intestine. Ann N Y Acad Sci 915: 5466.
  • Zdobnov, E.M. and Apweiler, R. (2001) InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847848.
  • Zhou, J.-J., Kan, Y., Antoniw, J., Pickett, J.A. and Field, L.M. (2006) Genome and EST analyses and expression of a gene family with putative functions in insect chemoreception. Chem Senses 31: 453465.