• Nasonia;
  • meiosis;
  • arthropods;
  • phylogenomics;
  • arrhenotoky


The parasitoid jewel wasp Nasonia vitripennis reproduces by haplodiploidy (arrhenotokous parthenogenesis). In diploid females, meiosis occurs during oogenesis, but in haploid males spermatogenesis is ameiotic and involves a single equational division. Here we describe the phylogenomic distribution of meiotic genes in N. vitripennis and in 10 additional arthropods. Homologues for 39 meiosis-related genes (including seven meiosis-specific genes) were identified in N. vitripennis. The meiotic genes missing from N. vitripennis are also sporadically absent in other arthropods, suggesting that certain meiotic genes are dispensable for meiosis. Among an additional set of 15 genes thought to be specific for male meiosis in Drosophila, two genes (bol and crl) were identified in N. vitripennis and Apis mellifera (both for which canonical meiosis is absent in males) and in other arthropods. The distribution of meiotic genes across arthropods and the impact of gene duplications and reproductive modes on meiotic gene evolution are discussed.