• Oncideres albomarginata chamela;
  • cellulase;
  • protein three-dimensional structure;
  • phylogenetic analysis;
  • glycosyl hydrolase evolution


Novel endogenous cDNAs of β-1, 4-endoglucanases (Oa-EGase I and Oa-EGase II) were cloned from the cerambycid beetle Oncideres albomarginata chamela. Oa-EGase I- and Oa-EGase II-deduced proteins and three-dimensional structures possess all features, including general architecture, signature motifs and catalytic domains, of glycosyl hydrolase families 5 and 45 (GHF5 and GHF45) and also share high levels of homology with other beetle cellulases. Total carboxymethylcellulase activity of O. a. chamela was 208.13 U/g of larvae. Phylogenetic analyses suggest that insect GHF5 and GHF45 are very ancient gene families and indicate, at least in the case of GHF5, that this family likely evolved from a common ancestor rather than, as is often reported, via horizontal gene transfer. Beetle GHF45 cellulases did not cluster with other metazoan cellulases. However, the presence of GHF45 cellulases in ancient molluscan taxa puts into question the hypothesis of horizontal gene transfer for the evolution of cellulases in animals.