SEARCH

SEARCH BY CITATION

References

  • Acosta, E.G., Castilla, V. and Damonte, E.B. (2009) Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11: 15331549.
  • Alto, B.W., Lounibos, L.P., Mores, C.N. and Reiskind, M.H. (2008a) Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc Biol Sci 275: 463471.
  • Alto, B.W., Reiskind, M.H. and Lounibos, L.P. (2008b) Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg 79: 688695.
  • Anderson, J.R. and Rico-Hesse, R. (2006) Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg 75: 886892.
  • Bennett, K.E., Olson, K.E., Munoz Mde, L., Fernandez-Salas, I., Farfan-Ale, J.A., Higgs, S. et al. (2002) Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 8592.
  • Bennett, K.E., Flick, D., Fleming, K.H., Jochim, R., Beaty, B.J. and Black, W.C. (2005) Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics 170: 185194.
  • Black, W.C., Bennett, K.E., Gorrochotegui-Escalante, N., Barillas-Mury, C.V., Fernandez-Salas, I., de Lourdes Munoz, M. et al. (2002) Flavivirus Susceptibility in Aedes aegypti. Arch Med Res 33: 379388.
  • Boonsanay, V. and Smith, D.R. (2007) Entry into and production of the Japanese encephalitis virus from C6/36 cells. Intervirology 50: 8592.
  • Bosio, C.F., Beaty, B.J. and Black, W.C. (1998) Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. Am J Trop Med Hyg 59: 965970.
  • Cabrera-Hernandez, A. and Smith, D.R. (2005) Mammalian dengue virus receptors. Dengue Bull 29: 119135.
  • Cao-Lormeau, V.M. (2009) Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands. Virol J 6: 35.
  • Chee, H.-Y. and AbuBakar, S. (2004) Identification of a 48 kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry. Biochem Biophys Res Commun 320: 1117.
  • Chen, Y., Maguire, T., Hileman, R.E., Fromm, J.R., Esko, J.D., Linhardt, R.J. et al. (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3: 866871.
  • Chen, Y.C., Wang, S.Y. and King, C.C. (1999) Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 73: 26502657.
  • Cox, J., Brown, H.E. and Rico-Hesse, R. (2011) Variation in vector competence for dengue viruses does not depend on mosquito midgut binding affinity. PloS Negl Trop Dis 5: e1172.
  • Crill, W.D. and Roehrig, J.T. (2001) Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75: 77697773.
  • Germi, R., Crance, J.-M., Garin, D., Guimet, J., Lortat-Jacob, H., Ruigrok, R.W.H. et al. (2002) Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292: 162168.
  • Gorrochotegui-Escalante, N., Lozano-Fuentes, S., Bennett, K.E., Molina-Cruz, A., Beaty, B.J. and Black, W.C. (2005) Association mapping of segregating sites in the early trypsin gene and susceptibility to dengue-2 virus in the mosquito Aedes aegypti. Insect Biochem Mol Biol 35: 771788.
  • Gubler, D.J. (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480496.
  • Gubler, D.J., Nalim, S., Tan, R., Saipan, H. and Sulianti Saroso, J. (1979) Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28: 10451052.
  • Gunther, J., Martinez-Munoz, J.P., Perez-Ishiwara, D.G. and Salas-Benito, J. (2007) Evidence of vertical transmission of dengue virus in two endemic localities in the state of Oaxaca, Mexico. Intervirology 50: 347352.
  • Guzman, M.G. and Kouri, G. (2002) Dengue: an update. Lancet Infect Dis 2: 3342.
  • Hase, T., Summers, P.L. and Eckels, K.H. (1989) Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol 104: 129143.
  • Hilgard, P. and Stockert, R. (2000) Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32: 10691077.
  • Huang, G., Vergne, E. and Gubler, D.J. (1992) Failure of dengue viruses to replicate in Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 29: 911914.
  • Hung, J.J., Hsieh, M.T., Young, M.J., Kao, C.L., King, C.C. and Chang, W. (2004) An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 78: 378388.
  • Jindadamrongwech, S., Thepparit, C. and Smith, D.R. (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149: 915927.
  • Joshi, V., Mourya, D.T. and Sharma, R.C. (2002) Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. Am J Trop Med Hyg 67: 158161.
  • Khin, M.M. and Than, K.A. (1983) Transovarial transmission of dengue 2 virus by Aedes aegypti in nature. Am J Trop Med Hyg 32: 590594.
  • Klasse, P.J., Bron, R. and Marsh, M. (1998) Mechanisms of enveloped virus entry into animal cells. Adv Drug Deliv Rev 34: 6591.
  • Klimstra, W.B., Ryman, K.D. and Johnston, R.E. (1998) Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72: 73577366.
  • Kroschewski, H., Allison, S.L., Heinz, F.X. and Mandl, C.W. (2003) Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308: 92100.
  • Kuadkitkan, A., Wikan, N., Fongsaran, C. and Smith, D.R. (2010) Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology 406: 149161.
  • Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E. et al. (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108: 717725.
  • Kyle, J.L. and Harris, E. (2008) Global spread and persistence of dengue. Annu Rev Microbiol 62: 7192.
  • Lin, X., Buff, E.M., Perrimon, N. and Michelson, A.M. (1999) Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126: 37153723.
  • Lin, Y.L., Liu, C.C., Lei, H.Y., Yeh, T.M., Lin, Y.S., Chen, R.M. et al. (2000) Infection of five human liver cell lines by dengue-2 virus. J Med Virol 60: 425431.
  • Linthicum, K.J., Platt, K., Myint, K.S., Lerdthusnee, K., Innis, B.L. and Vaughn, D.W. (1996) Dengue 3 virus distribution in the mosquito Aedes aegypti: an immunocytochemical study. Med Vet Entomol 10: 8792.
  • Ludwig, G.V., Kondig, J.P. and Smith, J.F. (1996) A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J Virol 70: 55925599.
  • Mercado-Curiel, R.F., Esquinca-Aviles, H.A., Tovar, R., Diaz-Badillo, A., Camacho-Nuez, M. and Munoz Mde, L. (2006) The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC Microbiol 6: 85.
  • Mercado-Curiel, R.F., Black, W.C. and Munoz Mde, L. (2008) A dengue receptor as possible genetic marker of vector competence in Aedes aegypti. BMC Microbiol 8: 118.
  • Miller, J.L., de Wet, B.J., Martinez-Pomares, L., Radcliffe, C.M., Dwek, R.A., Rudd, P.M. et al. (2008) The mannose receptor mediates dengue virus infection of macrophages. PloS Pathog 4: e17.
  • Mosso, C., Galvan-Mendoza, I.J., Ludert, J.E. and del Angel, R.M. (2008) Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378: 193199.
  • Munoz, M.L., Cisneros, A., Cruz, J., Das, P., Tovar, R. and Ortega, A. (1998) Putative dengue virus receptors from mosquito cells. FEMS Microbiol Lett 168: 251258.
  • Paingankar, M.S., Gokhale, M.D. and Deobagkar, D.N. (2010) Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol 155: 14531461.
  • Reyes-del Valle, J. and del Angel, R.M. (2004) Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 116: 95102.
  • Reyes-del Valle, J., Chavez-Salinas, S., Medina, F. and Del Angel, R.M. (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79: 45574567.
  • Rico-Hesse, R. (1990) Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174: 479493.
  • Rigau-Perez, J.G., Clark, G.G., Gubler, D.J., Reiter, P., Sanders, E.J. and Vorndam, A. (1998) Dengue and dengue haemorrhagic fever. Lancet 352: 971977.
  • Rosen, L., Shroyer, D.A., Tesh, R.B., Freier, J.E. and Lien, J.C. (1983) Transovarial transmission of dengue viruses by mosquitoes: Aedes albopictus and Aedes aegypti. Am J Trop Med Hyg 32: 11081119.
  • Russell, P.K., Brandt, W.E. and Dalrymple, J.M. (1980) Chemical and antigenic structure of flaviviruses. In The Togaviruses. Biology, Structure, Replication (Schlesinger, R.W., ed.), pp. 503529. Academic Press, New York, NY.
  • Sakoonwatanyoo, P., Boonsanay, V. and Smith, D.R. (2006) Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology 49: 161172.
  • Salas-Benito, J.S. and del Angel, R.M. (1997) Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 71: 72467252.
  • Salas-Benito, J., Reyes-Del Valle, J., Salas-Benito, M., Ceballos-Olvera, I., Mosso, C. and del Angel, R.M. (2007) Evidence that the 45-kD glycoprotein, part of a putative dengue virus receptor complex in the mosquito cell line C6/36, is a heat-shock related protein. Am J Trop Med Hyg 77: 283290.
  • Singh, K.R.P. (1967) Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.) Curr Sci 36: 506508.
  • Singh, K.R. (1971) Propagation of arboviruses in Singh's Aedes cell lines. I. Growth of arboviruses in Aedes albopictus and A. aegypti cell lines. Curr Top Microbiol Immunol 55: 127133.
  • Singh, K.R.P. and Paul, S.D. (1968) Multiplication of arboviruses in cell lines from Aedes albopictus and Aedes aegypti. Curr Sci 37: 6567.
  • Sinnis, P., Coppi, A., Toida, T., Toyoda, H., Kinoshita-Toyoda, A., Xie, J. et al. (2007) Mosquito heparan sulfate and its potential role in malaria infection and transmission. J Biol Chem 282: 2537625384.
  • Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W. et al. (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197: 823829.
  • Thaisomboonsuk, B.K., Clayson, E.T., Pantuwatana, S., Vaughn, D.W. and Endy, T.P. (2005) Characterization of dengue-2 virus binding to surfaces of mammalian and insect cells. Am J Trop Med Hyg 72: 375383.
  • Thepparit, C. and Smith, D.R. (2004) Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 78: 1264712656.
  • Thepparit, C., Phoolcharoen, W., Suksanpaisan, L. and Smith, D.R. (2004) Internalization and propagation of the dengue virus in human hepatoma (HepG2) cells. Intervirology 47: 7886.
  • Vazeille-Falcoz, M., Rosen, L., Mousson, L. and Rodhain, F. (1999) Replication of dengue type 2 virus in Culex quinquefasciatus (Diptera: Culicidae). Am J Trop Med Hyg 60: 319321.
  • Weaver, S.C. and Barrett, A.D. (2004) Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2: 789801.
  • Wikan, N., Kuadkitkan, A. and Smith, D.R. (2009) The Aedes aegypti cell line CCL-125 is dengue virus permissive. J Virol Methods 157: 227230.
  • Yazi Mendoza, M., Salas-Benito, J.S., Lanz-Mendoza, H., Hernandez-Martinez, S. and del Angel, R.M. (2002) A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg 67: 7684.