• Lactobacillus reuteri;
  • microencapsulation;
  • acid resistance;
  • probiotics


This study was designed to find the most suitable method and wall material for microencapsulation of the probiotic bacterium Lactobacillus reuteri to maintain cell viability during gastric challenge. Five L. reuteri strains were individually encapsulated using alginate, alginate plus starch, K-carrageenan with locust bean gum, or xanthan with gellan by extrusion or phase separation (emulsion). The morphology of the microcapsules was studied using phase contrast and cryo-scanning electron microscopy (cryo-SEM). The resistance of these microcapsules and the viability of contained L. reuteri to simulated gastric juice were studied. The shape and size of the microcapsules produced varied with the preparation method and type of wall material. Extruded microcapsules were larger and more uniformly shaped. Survival of microencapsulated L. reuteri was significantly better than that of planktonic cells and varied with the strain, method of microencapsulation, and wall material used. In general, microencapsulation using alginate and alginate with starch by both extrusion and phase separation were found to provide bacteria significantly greater protection (P < 0.05) against simulated gastric juice.