SEARCH

SEARCH BY CITATION

Keywords:

  • Adulteration;
  • fatty acid;
  • hazelnut oil;
  • stigmasta-3,5-diene;
  • tocopherols;
  • triacylglycerols;
  • vegetable oils

Summary

The possibilities of detecting hazelnut paste adulterated with refined and non-refined vegetable oils have been studied. Research was focussed mainly on peanut, high oleic-acid sunflower, corn and soybean oils which have a similar composition to hazelnut oil. The analytical procedures to detect fatty acid (FA), triacylglycerol (TAG) and tocopherol profiles as indicators of adulteration were determined. The better indicators experimentally determined were seven FA (palmitic, stearic, linoleic, linolenic, arachidonic, behenic and lignoceric acids) and different TAG with three unsaturated FA (the code letters used for FA are: P = C16:0; S = C18:0; O = C18:1; L = C18:2;; Ln = C18:3) (LLLn, LLL and OOO), two unsaturated FA (POL, PLL and SOO), and one unsaturated FA (PPL). As expected, when refined vegetable oils were added to hazelnut paste, the increment of stigmasta-3,5-diene allowed detection at levels of 2% oil added. Limits of detection were measured using standard and adulterated hazelnut with different amounts of non-refined vegetable oils added (5%, 10%, 20% and 30%). The distribution of tocopherols and tocotrienols is highly useful, except in the case of added sunflower oil. The differences between the experimental and theoretical values of the TAG with equivalent carbon number (ΔECN) of 42 does not improve the detection limit of hazelnut paste adulterated with peanut or sunflower oils. Similarly, tocopherols usually added to refined vegetable oils as an antioxidant were also determined.