SEARCH

SEARCH BY CITATION

References

  • Adkison, M.D. (1995) Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment? Canadian Journal of Fisheries and Aquatic Sciences, 52, 27622777.
  • Ardren, W. & Kapuscinski, A.R. (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 3549.
  • Banks, M.J. & Thompson, D.J. (1985) Lifetime mating success in the damselfly Coenagrion puella. Animal Behaviour, 33, 11751183.
  • Berthier, P., Beaumont, M.A., Cornuet, J.-M. & Luikart, G. (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics, 160, 741751.
  • Brakefield, P.M., El Filali, E., Van der Laan, R., Breuker, C.J., Saccheri, I.J. & Zwaan, B. (2001) Effective population size, reproductive success and sperm precedence, the butterfly, Bicyclus anynana, in captivity. Journal of Evolutionary Biology, 14, 148156.
  • Clobert, J., Danchin, E., Dhondt, A.A. & Nichols, J.D. (2001) Dispersal. Oxford University Press, New York.
  • Crandall, K.A., Bininda-Emonds, O.R.P., Mace, G.M. & Wayne, R.K. (2000) Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 15, 290295.
  • Daguet, C. (2006) Condition Assessment of the Southern Damselfly. Coenagrion mercuriale feature on Special Areas of Conservation (SACs) and Sites of Special Scientific Interest (SSSIs) in England, Vol. 1: Main Report. English Nature, Shrewsbury.
  • England, P.R., Cornuet, J.M., Berthier, P., Tallmon, D.A. & Luikart, G. (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conservation Genetics, 7, 303308.
  • Falconer, D.S. & Mackay, T.F.C. (1996) Introduction to Quantitative Genetics, 4th edn. Longman, Harlow.
  • Fincke, O.M. (1982) Lifetime mating success in a natural population of the damselfly, Enallagma hageni (Walsh) (Odonata, Coenagrionidae). Behavioral Ecology and Sociobiology, 10, 293302.
  • Fincke, O.M. & Hadrys, H. (2001) Unpredictable offspring survivorship in the damselfly, Megaloprepus coerulatus, shapes parental behavior, constrains sexual selection, and challenges traditional fitness estimates. Evolution, 55, 762772.
  • Fisher, R.A. (1930) The Genetical Theory of Natural Selection. Clarendon Press, Oxford.
  • Frankham, R. (1995) Effective population size/adult population size ratios in wildlife: a review. Genetical Research, 66, 95107.
  • Franklin, I.R. (1980) Evolutionary change in small populations. Conservation Biology: an Evolutionary-Ecological Perspective (eds M.E.Soulé & B.A.Wilcox), pp. 135149. Sinauer, Sunderland, MA.
  • Goudet, J. (1995) FSTAT, Version 1·2: a computer program to calculate F-statistics. Journal of Heredity, 86, 485486.
  • Hanski, I. (2003) Metapopulation Ecology. Oxford University Press, Oxford.
  • Hill, W.G. (1981) Estimation of effective population size from data on linkage disequilibrium. Genetical Research, 38, 209216.
  • Hunger, H. & Röske, W. (2001) Short-range dispersal of the southern damselfly (Coenagrion mercuriale: Odonata) defined experimentally using UV fluorescent ink. Zeitschrift Fur Okologie und Naturshutz, 9, 181187.
  • Ingvarsson, P.K. & Olsson, K. (1997) Hierarchical genetic structure and effective population sizes in Phalacrus substriatus. Heredity, 79, 153161.
  • IUCN (2006) http://www.iucnredlist.org
  • Jehle, R., Wilson, G.A., Arntzen, J.W. & Burke, T. (2005) Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T. marmoratus). Journal of Evolutionary Biology, 18, 619628.
  • Jolly, G.M. (1965) Explicit estimates from capture–recapture data with both death and immigration – stochastic model. Biometrika, 52, 225247.
  • Joyce, D.A. & Pullin, A.S. (2003) Conservation implications of the distribution of genetic diversity at different scales: a case study using the marsh fritillary butterfly (Euphydryas aurinia). Biological Conservation, 114, 453461.
  • Keller, L.F. & Waller, D.M. (2002) Inbreeding effects in wild populations. Trends in Ecology and Evolution, 17, 230241.
  • Koenig, W.D., Van Vuren, D. & Hooge, P.N. (1996) Detectability, philopatry and the distribution of dispersal distances in vertebrates. Trends in Ecology and Evolution, 11, 514517.
  • Koskinen, M.T., Haugen, T.O. & Primmer, C.R. (2002) Contemporary fisherian life-history evolution in small salmonid populations. Nature, 419, 826830.
  • Lande, R. (1995) Mutation and conservation. Conservation Biology, 9, 782791.
  • Mallet, J. (1986) Dispersal and gene flow in a butterfly with home range behaviour: Heliconis erato (Lepidoptera: Nymphalidae). Oecologia, 68, 210217.
  • Michiels, N.K. & Dhondt, A.A. (1991) Sources of variation in male mating success and female oviposition rate in a nonterritorial dragonfly. Behavioural Ecology and Sociobiology, 29, 1725.
  • Nagylaki, T. & Lucier, B. (1980) Numerical analysis of random drift in a cline. Genetics, 94, 497517.
  • Nei, M. & Tajima, F. (1981) Genetic drift and estimation of effective population size. Genetics, 98, 625640.
  • Nichols, R.A., Bruford, M.W. & Groombridge, J.J. (2001) Sustaining genetic variation in a small population: evidence from the Mauritius kestrel. Molecular Ecology, 10, 593602.
  • Nunney, L. & Elam, D.R. (1994) Estimating the effective population size of conserved populations. Conservation Biology, 8, 175184.
  • O’Grady, J., Reed, D.H., Brook, B.W. & Frankham, R. (2004) What are the best correlates of predicted extinction risk? Biological Conservation, 118, 513520.
  • Peel, D., Ovenden, J.R. & Peel, S.L. (2004) Neestimator: Software for Estimating Effective Population Size, Version 1·3. Queensland Government, Department of Primary Industries and Fisheries.
  • Pudovkin, A.I., Zaykin, D.V. & Hedgecock, D. (1996) On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics, 144, 383387.
  • Purse, B.V. (2001) The ecology and conservation of the Southern Damselfly (Coenagrion mercuriale). PhD Thesis, University of Liverpool. Liverpool.
  • Purse, B.V. & Thompson, D.J. (2003) Emergence of the damselfies Coenagrion mercuriale (charpentier) and Ceriagrion tenellum (villers) (Odonata: Coenagrionidae) at their northern range margins in Britain. European Journal of Entomology, 100, 9399.
  • Purse, B.V. & Thompson, D.J. (2005) Lifetime mating success in a marginal population of a damselfly, Coenagrion mercuriale. Animal Behaviour, 69, 13031315.
  • Purse, B.V., Hopkins, G.W., Day, K.J. & Thompson, D.J. (2003) Dispersal characteristics and management of a rare damselfly. Journal of Applied Ecology, 40, 716728.
  • Reed, D.H. & Frankham, R. (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution, 55, 10951103.
  • Rice, W.R. (1989) Analyzing tables of statistical tests. Evolution, 43, 223225.
  • Rouquette, J.R. & Thompson, D.J. (2007a) Patterns of movement and dispersal in an endangered damselfly. Journal of Applied Ecology, 44, 692701.
  • Rouquette, J.R. & Thompson, D.J. (2007b) Roosting site selection in the endangered damselfly, Coenagrion mercuriale, and implications for habitat design. Journal of Insect Conservation, 11, 187193.
  • Rowe, G. & Beebee, T.J.C. (2004) Reconciling genetic and demographic estimators of effective population size in the anuran amphibian Bufo calamita. Conservation Genetics, 5, 287298.
  • Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W. & Hanski, I. (1998) Inbreeding and extinction in a butterfly metapopulation. Nature, 392, 491494.
  • Seber, G.A.F. (1973) The Estimation of Animal Abundance and Related Parameters. Griffin, London.
  • Shrimpton, J.M. & Heath, D.D. (2003) Census vs. effective population size in chinook salmon: large- and small-scale environmental perturbation effects. Molecular Ecology, 12, 25712583.
  • Slatkin, M. (1973) Gene flow and selection in a cline. Genetics, 75, 733756.
  • Slatkin, M. (1985) Gene flow in natural populations. Annual Review of Ecology and Systematics, 16, 393430.
  • Spielman, D., Brook, B.W. & Frankham, R. (2004) Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences, USA, 101, 1526115264.
  • Stockwell, C.A., Hendry, A.P. & Kinnison, M.T. (2003) Contemporary evolution meets conservation biology. Trends in Ecology and Evolution, 18, 94101.
  • Stoks, R. (2000) Components of lifetime mating success and body size in males of a scrambling damselfly. Animal Behaviour, 59, 339348.
  • Tallmon, D.A., Luikart, G. & Beaumont, M.A. (2004) Comparative evaluation of a new effective population size estimator based on approximate Bayesian computation. Genetics, 167, 977988.
  • Thompson, D.J., Watts, P.C. & Saccheri, I.J. (2007) Conservation genetics for insects. Insect Conservation Biology (eds A.J.A.Stewart, T.R.New & O.T.Lewis), pp. 280300. CABI Publishing, Wallingford.
  • Vitalis, R. & Couvet, D. (2001) Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics, 157, 911925.
  • Wang, J.L. (2005) Estimation of effective population sizes from data on genetic markers. Philosophical Transactions of the Royal Society of London, B, 360, 13951409.
  • Wang, J.L. & Caballero, A. (1999) Developments in predicting the effective size of subdivided populations. Heredity, 82, 212226.
  • Wang, J.L. & Whitlock, M.C. (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429446.
  • Waples, R.S. (1989) A generalised approach for estimating effective population size from temporal changes in allele frequency. Genetics, 121, 379391.
  • Waples, R.S. (2002) Definition and estimation of effective population size in the conservation of endangered species. Population Viability Analysis (eds S.R.Beissinger & D.R.McCullough), pp. 147168. University of Chicago Press, Chicago, IL.
  • Watts, P.C., Rouquette, J.R., Saccheri, I.J., Kemp, S.J. & Thompson, D.J. (2004a) Molecular and ecological evidence for small-scale isolation by distance in an endangered damselfly, Coenagrion mercuriale. Molecular Ecology, 13, 29312945.
  • Watts, P.C., Thompson, D.J. & Kemp, S.J. (2004b) Cross-species amplification of microsatellite loci in some European zygopteran species (Odonata: Coenagrionidae). International Journal of Odonatology, 7, 8796.
  • Watts, P.C., Wu, J.H., Westgarth, C., Thompson, D.J. & Kemp, S.J. (2004c) A panel of microsatellite loci for the Southern Damselfly, Coenagrion mercuriale (Odonata: Coenagrionidae). Conservation Genetics, 5, 117119.
  • Watts, P.C., Kemp, S.J., Saccheri, I.J. & Thompson, D.J. (2005) Conservation implications of genetic variation between spatially and temporally distinct colonies of the damselfly Coenagrion mercuriale. Ecological Entomology, 30, 541547.
  • Watts, P.C., Saccheri, I.J., Kemp, S.J. & Thompson, D.J. (2006) Impact of regional and local habitat isolation upon genetic diversity of the endangered damselfly Coenagrion mercuriale (Odonata: Zygoptera). Freshwater Biology, 51, 193205.
  • Watts, P.C., Rousset, F., Saccheri, I.J., Leblois, R., Kemp, S.J. & Thompson, D.J. (2007) Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale: Odonata: Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator. Molecular Ecology, 16, 737751.
  • Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 13581370.
  • Whitlock, M.C. & Barton, N.H. (1997) The effective size of a subdivided population. Genetics, 163, 11771191.
  • Wilson, A.J., Hutchings, J.A. & Ferguson, M.M. (2004) Dispersal in a stream dwelling salmonid: inferences from tagging and microsatellite studies. Conservation Genetics, 5, 2537.
  • Wright, S. (1931) Evolution in Mendelian populations. Genetics, 28, 114138.
  • Wright, S. (1943) Isolation by distance. Genetics, 28, 114138.