SEARCH

SEARCH BY CITATION

Keywords:

  • Feeder Watch;
  • climate change;
  • habitat loss;
  • wintering birds;
  • supplemental feeding;
  • occupancy modelling;
  • ranges;
  • citizen science

Summary

1. Ecologists have long been interested in the role of climate in shaping species’ ranges, and in recent years, this relationship has taken on greater significance because of the need for accurate predictions of the effects of climate change on wildlife populations. Bioclimatic relationships, however, are potentially complicated by various environmental factors operating at multiple spatial and temporal scales. Here, we test the hypothesis that climatic constraints on bird distributions are modified by species-specific responses to weather, urbanization and use of supplemental food.

2. Our analyses focused on 18 bird species with data from over 3000 sites across the north-eastern United States and adjacent Canadian provinces. We use hierarchal occupancy modelling to quantify the effects of short-term weather variation and surrounding urbanization on food stress and probabilities of detection, and how these fine-scale changes modify the role that climate has on the distributions of wintering bird populations at regional scales.

3. Examining site occupancy and supplemental food use across the study region, we found that average minimum temperature was an important factor limiting bird distributions, supporting the hypothesis that the occupancy of wintering birds is limited by climatic constraints. We found that 15 of 18 species (83%) were more energetically stressed (had a higher likelihood of visiting a feeder station) as minimum temperature declined from the seasonal average. Because we found these patterns in populations that regularly visit supplemental food sites and were likely not food-limited, we suggest that resource availability is less important than climate in constraining wintering bird distributions. Across a winter season, local within-winter extinction probabilities were lower and colonization probabilities higher at warmer sites supporting the role of climate-mediated range shifts. Importantly, however, these relationships were modified by the degree of urbanization and species’ abilities to persist in human-modified landscapes.

4. Our results suggest that urbanization and behavioural adaptation can modify the role of climate on bird ranges and should be included in future analyses of range shifts because of climate change.