Predicting plant species’ responses to river regulation: the role of water level fluctuations

Authors

  • ILONA LEYER

    Corresponding author
    1. Faculty of Biology, Conservation Biology, Philipps-University Marburg, Karl-von-Frisch-Strasse, 35032 Marburg, Germany
    Search for more papers by this author

Ilona Leyer, Faculty of Biology, Conservation Biology, Philipps-University Marburg, Karl-von-Frisch-Strasse, 35032 Marburg, Germany (fax +49 64212826588; e-mail leyer@staff.uni-marburg.de).

Summary

  • 1One of the main targets of river regulation with dams and dykes is the stabilization of highly fluctuating water tables. While there is information about the overall impact of such regulation measures on plant species composition and richness, far less is known about specific species’ response patterns to reduced water level fluctuations.
  • 2The response of 30 common grassland species to soil moisture and water level fluctuations was assessed. Floristic data were collected from the floodplain of the Elbe River, Germany, from 182 plots, 99 within the recent floodplain and 83 in an older floodplain, separated from one another by dykes. Hydrological data were collected weekly over 2 years at 37 water level wells. Using logistic regression, the patterns of species’ responses to hydrological regulation were predicted.
  • 3The majority of species responded significantly to water level fluctuations. Species of high elevation habitats occurred at lower elevations where water level fluctuations were reduced, indicating increasing drought at high elevation habitats. However, species that occurred in floodplain depressions tended to shift from lower to higher elevations to avoid permanent inundation.
  • 4Almost half of the species showed a significant preference for either highly fluctuating water tables, characteristic of the recent floodplain, or for stable water tables, characteristic of the older floodplain. The probability of their occurrence was either reduced or increased along a gradient of reduced fluctuations. These species’ responses could be partly explained by altered flooding regimes, although other factors, such as disturbance and dispersal processes, were also involved.
  • 5Synthesis and applications. This study demonstrates that reduced water level fluctuations caused by the construction of dams and dykes lead to substantial changes in the spatial distribution of floodplain plant species and in species composition. The methodology reported here allows accurate prediction of shifts in floodplain vegetation in response to human-induced alterations in floodplain landscapes. This can be used as a tool to assess river regulation measures and for floodplain restoration purposes, such as dyke relocations.

Ancillary