SEARCH

SEARCH BY CITATION

References

  • Akaike, H. (1973) Information theory as an extension of the maximum likelihood principle. Second International Symposium on Information Theory (eds B.N. Petrov & F. Caski), pp. 267281. Akademiai Kiado, Budapest, Hungary.
  • Anderson, D.R., Burnham, K.P. & Thompson, W.L. (2000) Null hypothesis testing: problems, prevalence and an alternative. Journal of Wildlife Management, 64, 912923.
  • Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multi-Model Inference: A Practical Information Theoretic Approach. Springer-Verlag, New York, NY.
  • Calder, W.A. (1984) Size, Function, and Life History. Harvard University Press, Cambridge, MA.
  • Caughley, G. & Gunn, A. (1996) Conservation Biology in Theory and Practice. Blackwell, Cambridge, MA.
  • Clark, J.S. (2005) Why environmental scientists are becoming Bayesians. Ecology Letters, 8, 215.
  • Crome, F.H.J., Thomas, M.R. & Moore, L.A. (1996) A novel Bayesian approach to assessing impacts of rain forest logging. Ecological Applications, 6, 11041123.
  • Dennis, B. (1996) Discussion: should ecologists become Bayesians? Ecological Applications, 6, 10951103.
  • Dunning, J.B. Jr (1993) CRC Handbook of Avian Body Masses. CRC Press, Boca Raton, FL.
  • Ellison, A.M. (2004) Bayesian inference in ecology. Ecology Letters, 7, 509520.
  • Fidler, F., Cumming, G., Burgman, M. & Thomason, N. (2004) Statistical reform in medicine, psychology and ecology. Journal of Socio-Economics, 33, 615630.
  • Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996) Markov Chain Monte Carlo in Practice. Chapman & Hall, London, UK.
  • Gurevitch, J. & Hedges, L.V. (2001) Meta-analysis: combining the results of independent experiments. Design and Analysis of Ecological Experiments, 2nd edn (eds S.M. Scheiner & J. Gurevitch), pp. 347369. Oxford University Press, Oxford, UK.
  • Hilborn, R. & Mangel, M. (1997) The Ecological Detective: Confronting Models with Data. Princeton University Press, Princeton, NJ.
  • Johnson, D.H. (1999) The insignificance of statistical significance testing. Journal of Wildlife Management, 63, 763772.
  • Johnston, J.P., Peach, W.J., Gregory, R.D. & White, S.A. (1997) Survival rates of tropical and temperate passerines: a Trinidadian perspective. American Naturalist, 150, 771789.
  • Lebreton, J.-D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs, 62, 67118.
  • Linacre, N.A., Stewart-Oaten, A., Burgman, M.A. & Ades, P.K. (2004) Incorporating collateral data in conservation biology. Conservation Biology, 18, 768774.
  • Link, W.A., Cam, E., Nichols, J.D. & Cooch, E.G. (2002) of BUGS and birds: Markov chain Monte Carlo for hierarchical modeling in wildlife research. Journal of Wildlife Management, 66, 277291.
  • McCarthy, M.A. & Parris, K.M. (2004) Clarifying the effect of toe clipping on frogs with Bayesian statistics. Journal of Applied Ecology, 41, 780786.
  • Martin, T.G., Kuhnert, P.M., Mengersen, K. & Possingham, H.P. (2005) The power of expert opinion in ecological models using Bayesian methods: impact of grazing on birds. Ecological Applications, 15, 266280.
  • Marzolin, G. (1988) Polygynie du Cincle pongeur (Cinclus cinclus) dans les côtes de Lorraine. L’Oiseau et la Revue Francaise d’Ornithologie, 58, 277286.
  • Masters, P. (1993) The effects of fire-driven succession and rainfall on small mammals in spinifex grasslands at Uluru National Park, Northern Territory. Wildlife Research, 20, 803813.
  • Masters, P., Dickman, C. & Crowther, M. (2003) The effects of cover reduction on mulgara (Dasycercus cristicauda), rodent and invertebrate populations in central Australia: implications for management. Austral Ecology, 28, 658665.
  • Peters, R.H. (1983) The Ecological Implications of Body Size. Cambridge University Press, Cambridge, UK.
  • Rowley, I. & Russell, E. (1991) Demography of passerines in the temperate southern hemisphere. Bird Population Studies: Relevance to Conservation and Management (eds C.M. Perrins, J.D. Lebreton & G.J.M. Hirons), pp. 2244. Oxford University Press, Oxford, UK.
  • Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B. & Charnov, E.L. (2004) Effects of body size and temperature on population growth. American Naturalist, 163, 429441.
  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & van der Linde, A. (2002) Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B, 64, 583639.
  • Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. (2003) WinBUGS User Manual, Version 1·4. MRC Biostatistics Unit, Cambridge, UK.
  • Stephens, P.A., Buskirk, S.W., Hayward, G.D. & Martínez Del Rio, C. (2005) Information theory and hypothesis testing: a call for pluralism. Journal of Applied Ecology, 42, 412.
  • Underwood, A.J. (1997) Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge, UK.
  • Wade, P.R. (2000) Bayesian methods in conservation biology. Conservation Biology, 14, 13081316.
  • Wyckoff, P. & Clark, J.S. (2000) Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches. Canadian Journal of Forest Research, 30, 156167.
  • Yom-Tov, Y., McCleery, R. & Purchase, D. (1992) The survival rate of Australian passerines. Ibis, 134, 374379.