SEARCH

SEARCH BY CITATION

References

  • Ackerly, D.D. (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Science, 164, S165S184.
  • Aspinall, R. (1992) An inductive modeling procedure based on Bayes theorem for analysis of pattern in spatial data. International Journal of Geographical Information Systems, 6, 105121.
  • Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101118.
  • Austin, M.P., Belbin, L., Meyers, J.A., Doherty, M.D. & Luoto, M. (in press) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecological Modelling, in press.
  • Barry, S.C. & Elith, J. (2006) When things go wrong: error and uncertainty in habitat models. Journal of Applied Ecology, 43, 413423.
  • Boyce, M.S., Vernier, P.R., Nielsen, S.E. & Schmiegelow, F.K.A. (2002) Evaluating resource selection functions. Ecological Modelling, 157, 281300.
  • Carey, P.D. (1996) DISPERSE: a cellular automaton for predicting the distribution of species in a changed climate. Global Ecology and Biogeography Letters, 5, 217226.
  • Drake, J.A., Randin, C. & Guisan, A. (2006) Modelling ecological niches with support vector machines. Journal of Applied Ecology, 43, 424432.
  • Elith, J., Burgman, M.A. & Regan, H.M. (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling, 157, 313329.
  • Ferrier, S. & Guisan, A. (2006) Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393404.
  • Ferrier, S., Drielsma, M., Manion, G. & Watson, G. (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales. II. Community-level modelling. Biodiversity and Conservation, 11, 23092338.
  • Ferrier, S., Powell, G.V.N., Richardson, K.S., Manion, G., Overton, J.M., Allnutt, T.F., Cameron, S.E., Mantle, K., Burgess, N.D., Faith, D.P., Lamoreux, J.F., Kier, G., Hijmans, R.J., Funk, V.A., Cassis, G.A., Fisher, B.L., Flemons, P., Lees, D., Lovett, J.C. & Van Rompaey, R.S.A.R. (2004) Mapping more of terrestrial biodiversity for global conservation assessment: a new approach to integrating disparate sources of biological and environmental data. Bioscience, 54, 11011109.
  • Grace, J.B. & Pugesek, B.H. (1997) A structural equation model of plant species richness and its application to a coastal wetland. American Naturalist, 149, 436460.
  • Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A.T. (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution, 19, 497503.
  • Guisan, A., Edwards, J., Thomas, C. & Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89100.
  • Hastie, T., Tibshirani, R. & Friedman, J. (2001) The Elements of Statistical Learning. Springer Verlag, Berlin.
  • Hirzel, A.H., Hausser, J., Chessel, D. & Perrin, N. (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83, 20272036.
  • Hirzel, A.H., Helfer, V. & Metral, F. (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145, 111121.
  • Hirzel, A., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. (in press) Evaluating predictive habitat distribution models with presence-only data: a new method. Ecological Modelling.
  • Huston, M.A. (2002) Introductory essay: critical issues for improving predictions. Predicting Species Occurrences: Issues of Accuracy and Scale (eds J.M.Scott, P.J.Heglund, M.L.Morrison, J.B.Haufler, M.G.Raphael, W.A.Wall & F.B.Samson), pp. 721. Island Press, Covelo, CA.
  • Johnson, J.B. & Omland, K.S. (2004) Model selection in ecology and evolution. Trends in Ecology and Evolution, 19, 101108.
  • Knight, C.A. & Ackerly, D.D. (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters, 5, 6676.
  • Leathwick, J.R. & Austin, M.P. (2001) Competitive interactions between tree species in New Zealand's old-growth indigenous forests. Ecology, 82, 25602573.
  • Legendre, P. (1993) Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 16591673.
  • Lehmann, A., Overton, J.M. & Austin, M.P. (2002) Regression models for spatial prediction: their role for biodiversity and conservation. Biodiversity and Conservation, 11, 20852092.
  • Lehmann, A., Overton, J.M. & Leathwick, J.R. (2002) GRASP: generalized regression analysis and spatial prediction. Ecological Modelling, 157, 189207.
  • Minchin, P.R. (1987) Simulation of multidimensional community patterns: toward a comprehensive model. Vegetatio, 71, 145156.
  • Moisen, G.G. & Frescino, T.S. (2002) Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157, 209225.
  • Pearce, J. & Boyce, M. (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405412.
  • Phillips, S.J., Dudik, M. & Schapire, R.E. (2005) Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190, 231259.
  • Pulliam, H.R. (2000) On the relationship between niche and distribution. Ecology Letters, 3, 349361.
  • Ronce, O. (2001) Understanding plant dispersal and migration. Trends in Ecology and Evolution, 16, 663.
  • Rushton, S.P., Ormerod, S.J. & Kerby, G. (2004) New paradigms for modelling species’ distributions? Journal of Applied Ecology, 41, 193200.
  • Schroder, H.K., Anderson, H.E. & Kiehl, K. (2005) Rejecting the mean: estimating the response of fen plant species to environmental factors by non-linear quantile regression. Journal of Vegetation Science, 16, 373382.
  • Segurado, P., Araújo, M. & Kunin, W.E. (2006) Consequences of spatial autocorrelation on niche-based models. Journal of Applied Ecology, 43, 433444.
  • Thuiller, W. (2003) BIOMOD: optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9, 13531362.
  • Wood, S.N. (2004) Low Rank Scale Invariant Tensor Smooths for Generalized Additive Mixed Models. Department of Statistics, University of Glasgow, Glasgow, UK.
  • Yee, T.W. (2004a) A new technique for maximum likelihood canonical Gaussian ordination. Ecological Monographs, 74, 685701.
  • Yee, T.W. (2004b) Quantile regression via vector generalized additive models. Statistics in Medicine, 23, 22952315.
  • Yee, T.W. & Wild, C.J. (1996) Vector generalized additive models. Journal of the Royal Statistical Society, B, 58, 481493.