Importance of sampling design and analysis in animal population studies: a comment on Sergio et al.


Correspondence author. E-mail:


  • 1The use of predators as indicators and umbrellas in conservation has been criticized. In the Trentino region, Sergio et al. (2006; hereafter SEA) counted almost twice as many bird species in quadrats located in raptor territories than in controls. However, SEA detected astonishingly few species. We used contemporary Swiss Breeding Bird Survey data from an adjacent region and a novel statistical model that corrects for overlooked species to estimate the expected number of bird species per quadrat in that region.
  • 2There are two anomalies in SEA which render their results ambiguous. First, SEA detected on average only 6·8 species, whereas a value of 32 might be expected. Hence, they probably overlooked almost 80% of all species. Secondly, the precision of their mean species counts was greater in two-thirds of cases than in the unlikely case that all quadrats harboured exactly the same number of equally detectable species. This suggests that they detected consistently only a biased, unrepresentative subset of species.
  • 3Conceptually, expected species counts are the product of true species number and species detectability p. Plenty of factors may affect p, including date, hour, observer, previous knowledge of a site and mobbing behaviour of passerines in the presence of predators. Such differences in p between raptor and control quadrats could have easily created the observed effects. Without a method that corrects for such biases, or without quantitative evidence that species detectability was indeed similar between raptor and control quadrats, the meaning of SEA's counts is hard to evaluate. Therefore, the evidence presented by SEA in favour of raptors as indicator species for enhanced levels of biodiversity remains inconclusive.
  • 4Synthesis and application. Ecologists should pay greater attention to sampling design and analysis in animal population estimation. Species richness estimation means sampling a community. Samples should be representative for the community studied and the sampling fraction among communities compared should be the same on average, otherwise formal estimation approaches must be applied to avoid misleading inference.