SEARCH

SEARCH BY CITATION

References

  • Andersen, R., Francez, A-J. & Rochefort, L. (2006) The physicochemical and microbiological status of a restored bog in Québec: identification of relevant criteria to monitor success. Soil Biology & Biochemistry, 38, 13751387.
  • Artz, R.R.E., Chapman, S.J. & Campbell, C.D. (2006) Substrate utilisation profiles of microbial communities in peat are depth-dependent and correlate with whole soil FTIR profiles. Soil Biology & Biochemistry, 38, 29582962.
  • Artz, R.R.E., Chapman, S.J., Robertson, A.H.J., Potts, J.M., Laggoun-Défarge, F., Gogo, S., Comont, L., Disnar, J-R. & Francez, A-J. (2008) FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biology & Biochemistry, 40, 515527.
  • Belyea, L.R. & Malmer, N. (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biology, 10, 10431052.
  • Bortoluzzi, E., Epron, D., Siegenthaler, A., Gilbert, D. & Buttler, A. (2006) Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytologist, 172, 708718.
  • Buttler, A. (1992) Permanent plot research in wet meadows and cutting experiment. Vegetatio, 103, 113124.
  • Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S. & Potts, J.M. (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments. Applied and Environmental Microbiology, 69, 35933599.
  • Chapman, S.J., Buttler, A., Francez, A-J., Laggoun-Défarge, F., Vasander, H., Schloter, M., Combe, J., Grosvernier, P., Harms, H., Epron, D., Gilbert, D. & Mitchell, E. (2003) Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Frontiers in Ecology and the Environment, 1, 525532.
  • Clein, J.S. & Schimel, J.P. (1995) Nitrogen turnover and availability during succession from alder to poplar in Alaskan taiga forests. Soil Biology & Biochemistry, 27, 743752.
  • Cocozza, C., D’Orazio, V., Miano, T.M. & Shotyk, W. (2003) Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR. Organic Geochemistry, 34, 4960.
  • Dijkstra, F.A., Cheng, W.X. & Johnson, D.W. (2006) Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biology & Biochemistry, 38, 25192526.
  • Fenner, N., Ostle, N., Freeman, C., Sleep, D. & Reynolds, B. (2004) Peatland carbon afflux partitioning reveals that Sphagnum photosynthate contributes to the DOC pool. Plant and Soil, 259, 345354.
  • Fierer, N., Schimel, J.P., Cates, R.G. & Zou, J. (2001) Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biology & Biochemistry, 33, 18271839.
  • Fisk, M.C., Ruether, K.F. & Yavitt, J.B. (2003) Microbial activity and functional composition among northern peatland ecosystems. Soil Biology & Biochemistry, 35, 591602.
  • Glatzel, S., Kalbitz, K., Dalva, M. & Moore, T. (2003) Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma, 113, 397411.
  • Goodall, D.W. (1952) Some considerations in the use of point quadrats. Australian Journal of Scientific Research, 5, 141.
  • Gorham, E. & Rochefort, L. (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetlands Ecology and Management, 11, 109119.
  • Graham, M.H. & Haynes, R.J. (2005) Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by Biolog and substrate-induced respiration methods. Applied Soil Ecology, 29, 155164.
  • Gruber, N. et al . (2004) The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions. Toward CO2 stabilization: Issues, Strategies and Consequences (eds C.B.Field & M.R.Raupach), pp. 4576. Island Press, Washington, D.C.
  • Hättenschwiler, S. & Vitousek, P.M. (2000) Role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology & Evolution, 15, 238243.
  • Kennedy, N., Brodie, E., Connolly, J. & Clipson, N. (2004) Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environmental Microbiology, 6, 10701080.
  • Kivimäki, S., Yli-Petäys, M. & Tuittila, E-S. (2008) Carbon sink function of sedge and Sphagnum patches in a restored cut-away peatland. Journal of Applied Ecology, 45, 921929. .
  • Komulainen, V.M., Tuittila, E.S., Vasander, H. & Laine, J. (1998) Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. Journal of Applied Ecology, 36, 634648.
  • Kuzyakov, Y., Friedel, J.K. & Stahr, K. (2000) Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 14851498.
  • Laggoun-Défarge, F., Mitchell, E., Gilbert, D., Disnar, J-R., Comont, L., Warner, B. & Buttler, A. (2008) Cut-over peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoeba). Journal of Applied Ecology, 45, 716727.
  • Legendre, P. & Anderson, M.J. (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69, 124.
  • Lepš, J. & Šmilauer, P. (2003) Hierarchical analysis of community variation. Multivariate Analysis of Ecological Data Using Canoco. Cambridge University Press, Cambridge, UK. pp. 141144.
  • Parker, F.S. (1971) Applications of Infrared Spectroscopy in Biochemistry, Biology and Medicine. Adam Hilger, London.
  • Paterson, E., Osler, G., Dawson, L.A., Gebbing, T., Sim, A. & Ord, B (2008) Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil. Soil Biology and Biochemistry, 40, 11031113.
  • Rochefort, L. & Price, J.S. (2003) Restoration of Sphagnum dominated peatlands. Wetlands Ecology and Management, 11, 12.
  • Schipper, L.A., Degens, B.P., Sparling, G.P. & Duncan, L.C. (2001) Changes in microbial heterotrophic diversity along five plant successional sequences. Soil Biology & Biochemistry, 33, 20932103.
  • Ström, L. & Christensen, T.R. (2007) Below-ground carbon turnover and greenhouse gas exchanges in a subarctic wetland. Soil Biology & Biochemistry, 39, 16891698.
  • Ström, L., Mastepanov, M. & Christensen, T.R. (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry, 75, 6582.
  • Thormann, M.N. (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Canadian Journal of Soil Science, 86, 281293.
  • Trinder, C.J., Artz, R.R.E. & Johnson, D. (2008) Contribution of plant photosynthate to soil respiration and dissolved organic carbon in a naturally recolonising cutover peatland. Soil Biology & Biochemistry, 40, 16221628.
  • Tuittila, E.S., Komulainen, V.M., Vasander, H. & Laine, J. (1999) Restored cut-away peatland as a sink for atmospheric CO2. Oecologia, 120, 563574.
  • Verhoeven, J.T.A. & Toth, E. (1995) Decomposition of Carex and Sphagnum litter in fens – effects of litter quality and inhibition by living-tissue-homogenates. Soil Biology & Biochemistry, 27, 271275.
  • Waddington, J.M. & Warner, K.D. (2001) Atmospheric CO2 sequestration in restored mined peatlands. Ecoscience, 8, 359369.
  • Waddington, J.M., Warner, K.D. & Kennedy, G.W. (2002) Cutover peatlands: a persistent source of atmospheric CO2. Global Biochemical Cycles, 16, 1002.
  • Williams, B.L. & Silcock, D.J. (1997) Nutrient and microbial changes in peat profile beneath Sphagnum magellanicum in response to additions of ammonium nitrate. Journal of Applied Ecology, 34, 961970.
  • Yan, W., Artz, R.R.E. & Johnson, D. (2008) Species-specific effects of plants colonising cutover peatlands on patterns of carbon source utilisation by soil microorganisms. Soil Biology and Biochemistry, 40, 544549.