SEARCH

SEARCH BY CITATION

References

  • Aarts, G., MacKenzie, M., McConnell, B., Fedak, M. & Matthiopoulos, J. (2008) Estimating space-use and habitat preference from wildlife telemetry data. Ecography, 31, 140160.
  • Bang, H. & Robins, J.M. (2005) Doubly robust estimation in missing data and causal inference models. Biometrics, 61, 962972.
  • Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.-S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution, 24, 127135.
  • Broström, G. (2008) Generalized linear models with clustered data: the glmmML package. Available at: http://tal.stat.umu.se/~gb/glmmML/glmmML_0.81-2.pdf accessed 29 June 2009.
  • Butler, M.A. & King, A.A. (2004) Phylogenetic comparative analyses: a modeling approach for adaptive evolution. The American Naturalist, 164, 683695.
  • Carey, V., Zeger, S.L. & Diggle, P. (1993) Modelling multivariate binary data with alternating logistic regressions. Biometrika, 80, 517526.
  • Carriere, I. & Bouyer, J. (2002) Choosing marginal or random-effects models for longitudinal binary responses: application to self-reported disability among older persons. BMC Medical Research Technology, 2, 15.
  • Chaix, B., Bobashev, G., Merlo, J. & Chauvin, P. (2004) RE: “detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data”. American Journal of Epidemiology, 160, 505506.
  • Cooch, E.G., Cam, E. & Link, W. (2002) Occam’s shadow: levels of analysis in evolutionary ecology – where to next? Journal of Applied Statistics, 29, 1948.
  • Diggle, P.J., Liang, K.-Y. & Zeger, S.L. (1994) Analysis of Longitudinal Data. Oxford University Press, London.
  • Dormann, C.F., McPherson, J.M., Araujo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kühn, I., Ohlemüller, R., Peres-Neto, P.R., Reineking, B., Schröder, B., Schurr, F.M. & Wilson, R. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 30, 609628.
  • Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002) Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160, 712726.
  • Gillies, C.S., Hebblewhite, M., Nielsen, S.E., Krawchuk, M.A., Aldridge, C.L., Frair, J.L., Saher, D.J., Stevens, C.E. & Jerde, C.L. (2006) Application of random effects to the study of resource selection by animals. Journal of Animal Ecology, 75, 887898.
  • Heagerty, P.J. (1999) Marginally specified logistic-normal models for longitudinal binary data. Biometrics, 55, 688698.
  • Heagerty, P.J. & Kurland, B.F. (2001) Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973985.
  • Heagerty, P.J. & Zeger, S.L. (1998) Lorelogram: a regression approach to exploring dependence in longitudinal categorical responses. Journal of the American Statistical Association, 93, 150162.
  • Hebblewhite, M. & Merrill, E.H. (2008) Modelling wildlife-human relationships for social species with mixed-effects resource selection models. Journal of Applied Ecology, 45, 834844.
  • Højsgaard, S., Halekoh, U. & Yan, J. (2005) The R package geepack for generalized estimating equations. Journal of Statistical Software, 15, 111.
  • Ives, A.R. & Zhu, J. (2006) Statistics for correlated data: phylogenies, space, and time. Ecological Applications, 16, 2032.
  • Larsen, K. & Merlo, J. (2005) Appropriate assessment of neighborhood effects on individual health: integrating random and fixed effects in multilevel logistic regression. American Journal of Epidemiology, 161, 8188.
  • Lee, Y. & Nelder, J.A. (2004) Conditional and marginal models: another view. Statistical Science, 19, 219238.
  • Liang, K.-Y. & Zeger, S.L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73, 1322.
  • Molenberghs, G. & Verbeke, G. (2005) Models for Discrete Longitudinal Data. Springer, New York, NY.
  • Neuhaus, J.M., Kalbfleish, J.D. & Hauck, W.W. (1991) A comparison of cluster-specific and population-averaged approaches for analyzing correlated data. International Statistical Review, 59, 2535.
  • Nussey, D.H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. (2008) Measuring senescence in wild animal populations: towards a longitudinal approach. Functional Ecology, 22, 393406.
  • Pendergast, J.F., Gange, S.J., Newton, M.A., Lindstrom, M.J., Palta, M. & Fisher, M.R. (1996) A survey of methods for analyzing clustered binary response data. International Statistical Review, 64, 89118.
  • Pinheiro, J.C. & Bates, D.M. (2000) Mixed-Effects Models in S and S-Plus. Springer, New York, NY.
  • Preisser, J.S. (2004) The first author replies. American Journal of Epidemiology, 160, 506507.
  • Preisser, J.S., Arcury, T.A. & Quandt, S.A. (2003) Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data. American Journal of Epidemiology, 158, 495501.
  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Version 2.6.2, Vienna, Austria. Available at: http://www.R-project.org accessed 29 June 2009.
  • Rabe-Hesketh, S. & Skrondal, A. (2008) Multilevel and Longitudinal Modeling Using Stata, 2nd edn. Stata Press, College Station, TX.
  • Ritz, J. & Spiegelman, D. (2004) Equivalence of conditional and marginal regression models for clustered and longitudinal data. Statistical Methods in Medical Research, 13, 309323.
  • Robins, J.M., Rotnitzky, A. & Zhao, L.P. (1995) Analysis of semiparametric regression-models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90, 106121.
  • Rubin, D.B. & Little, R.J.A. (2002) Statistical Analysis with Missing Data, 2nd edn. Wiley-Interscience, Hoboken, NJ.
  • Scharfstein, D.O., Rotnitzky, A. & Robins, J.M. (1999) Adjusting for non-ignorable drop-out using semiparametric non-response models (with discussion). Journal of the American Statistical Association, 94, 10961146.
  • Schildcrout, J.S. & Heagerty, P.J. (2007) Marginalized models for moderate to long series of longitudinal binary response data. Biometrics, 63, 322331.
  • Stiratelli, R., Laird, N. & Ware, J.H. (1984) Random-effects models for serial observations with binary response. Biometrics, 40, 961971.
  • Young, M.L., Preisser, J.S., Qaqish, B.F. & Wolfson, M. (2007) Comparison of subject-specific and population averaged models for count data from cluster-unit intervention trials. Statistical Methods in Medical Research, 16, 167184.
  • Zeger, S.L., Liang, K.-Y. & Albert, P.S. (1988) Models for longitudinal data: a generalized estimating equation approach. Biometrics, 44, 10491060.
  • Zicus, M.C., Fieberg, J. & Rave, D.P. (2003) Does mallard clutch size vary with landscape composition: a different view. Wilson Bulletin, 115, 409413.
  • Zicus, M.C., Rave, D.P., Das, A., Riggs, M.R. & Buitenwerf, M.L. (2006) Influence of land use on mallard nest-structure occupancy. Journal of Wildlife Management, 70, 13251333.