SEARCH

SEARCH BY CITATION

References

  • Alexander, J.S.A. (1997) Threatened Hollow-Dependent Fauna in Box-Ironbark Forests of Victoria. Department of Natural Resources and Environment, Victoria.
  • Alho, J.M. & Kangas, J. (1997) Analyzing uncertainties in experts’ opinions of forest plan performance. Forest Science, 43, 521528.
  • Alho, J.M., Kangas, J. & Kolehmainen, O. (1996) Uncertainty in expert predictions of the ecological consequences of forest plans. Applied Statistics, 45, 114.
  • Ayyub, B.M. (2001) Elicitation of Expert Opinions for Uncertainty and Risks. CRC Press, Boca Raton.
  • Baayen, R.H. (2008) Analyzing Linguistic Data: A Practical Introduction to Statistics using R. Cambridge University Press, New York.
  • Bashari, H., Smith, C. & Bosch, O. (2009) Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks. Agricultural Systems, 99, 2334.
  • Bates, D.M. (2008) lme4: Linear Mixed-Effects Models using S4 Classes. R package version 0.99875-9.
  • Ben-Haim, Y. (2001) Information-Gap Decision Theory: Decisions under Severe Uncertainty, 1st edn. Academic Press, San Diego.
  • Bestelmeyer, B.T., Tugel, A.J., Peacock Jr, G.L., Robinett, D.G., Shaver, P.L., Brown, J.R., Herrick, J.E., Sanchez, H. & Havstad, K.M. (2009) State-and-transition models for heterogeneous landscapes: a strategy for development and application. Rangeland Ecology and Management, 62, 115.
  • Buckley, Y.M., Brockerhoff, E., Langer, L., Ledgard, N., North, H. & Rees, M. (2005) Slowing down a pine invasion despite uncertainty in demography and dispersal. Journal of Applied Ecology, 42, 10201030.
  • Burgman, M. (2005) Risks and Decisions for Conservation and Environmental Management. Cambridge University Press, Cambridge.
  • Clemen, R.T. & Winkler, R.L. (1999) Combining probability distributions from experts in Risk Analysis. Risk Analysis, 19, 187203.
  • Cooke, R.M. (1991) Experts in Uncertainty: Opinion and Subjective Probability in Science. Oxford University Press, New York.
  • Czembor, C.A. (2009) Incorporating Uncertainty into Expert Models for Management of Box-Ironbark Forests and Woodlands in Victoria, Australia. Master’s thesis, The University of Melbourne, Australia.
  • Czembor, C.A. & Vesk, P.A. (2009) Incorporating between-expert uncertainty into state-and-transition simulation models for forest restoration. Forest Ecology and Management, 259, 165175.
  • Department of Natural Resources and Environment. (1998) Box-Ironbark Timber Assessment Project: Bendigo Forest Management Area and Pyrenees Range. Department of Natural Resources and Environment, East Melbourne.
  • Dorazio, R.M. & Johnson, F.A. (2003) Bayesian inference and decision theory – A framework for decision making in natural resource management. Ecological Applications, 13, 556563.
  • Environment Conservation Council. (2001) Box-Ironbark Forests and Woodlands Investigation. Environment Conservation Council, Victoria.
  • ESSA Technologies Ltd. (2007) Vegetation Dynamics Development Tool User Guide, Version 6.0. ESSA Technologies Ltd., Vancouver.
  • Faraway, J.J. (2006) Extending the Linear Model with R: Generalized Linear, Mixed Effects, and Nonparametric Regression Models. Chapman and Hall/CRC, Boca Raton.
  • Ferguson, C.A., Carvalho, L., Scott, E.M., Bowman, A.W. & Kirika, A. (2008) Assessing ecological responses to environmental change using statistical models. Journal of Applied Ecology, 45, 193203.
  • Ferson, S. (1996) What Monte Carlo methods cannot do. Human and Ecological Risk Assessment: An International Journal, 2, 9901007.
  • Forbis, T.A., Provencher, L., Frid, L. & Medlyn, G. (2006) Great Basin Land Management planning using ecological modeling. Environmental Management, 38, 6283.
  • Forests Commission of Victoria. (1928) Handbook of Forestry in Victoria. Forests Commission of Victoria, Melbourne.
  • Gelman, A. & Hill, J. (2007) Data Analysis using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York.
  • Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (2000) Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton.
  • Green, S.B. (1991) How many subjects does it take to do a regression analysis. Multivariate Behavioral Research, 26, 499510.
  • Hemstrom, M.A., Wisdom, M.J., Hann, W.J., Rowland, M.M., Wales, B.C. & Gravenmier, R.A. (2002) Sagebrush-Steppe vegetation dynamics and restoration potential in the interior Columbia Basin, U.S.A. Conservation Biology, 16, 12431255.
  • Hurley, M.V., Rapaport, E.K. & Johnson, C.J. (2009) Utility of expert-based knowledge for predicting wildlife-vehicle collisions. Journal of Wildlife Management, 73, 278286.
  • Irvine, R.J., Fiorini, S., Yearley, S., McLeod, J.E., Turner, A., Armstrong, H., White, P.C.L. & van der Wal, R. (2009) Can managers inform models? Integrating local knowledge into models of red deer habitat use. Journal of Applied Ecology, 46, 344352.
  • Johnson, C.J. & Gillingham, M.P. (2004) Mapping uncertainty: sensitivity of wildlife habitat ratings to expert opinion. Journal of Applied Ecology, 41, 10321041.
  • Kangas, A.S. & Kangas, J. (2004) Probability, possibility and evidence: approaches to consider risk and uncertainty in forestry decision analysis. Forest Policy and Economics, 6, 169188.
  • Kangas, J., Alho, J.M., Kolehmainen, O. & Mononen, A. (1998) Analyzing consistency of experts’ judgments – case of assessing forest biodiversity. Forest Science, 44, 610617.
  • Kellas, J.D. (1991) Chapter 9. Management of the dry sclerophyll forests in Victoria. 2. Box-Ironbark forests. Forest Management in Australia (eds F.H.McKinnell, E.R.Hopkins & J.E.D.Fox), pp. 163169. Beatty and Sons, Surrey.
  • Leskinen, P. & Kangas, J. (2001) Modelling future timber price development by using expert judgments and time series analysis. Silva Fennica, 35, 93102.
  • MacCallum, R.C., Widaman, K.F., Preacher, K.J. & Hong, S. (2001) Sample size in factor analysis: The role of model error. Multivariate Behavioral Research, 36, 611637.
  • Martin, T.G., Kuhnert, P.M., Mengersen, K. & Possingham, H.P. (2005) The power of expert opinion in ecological models using Bayesian methods: Impact of grazing on birds. Ecological Applications, 15, 266280.
  • McAllister, M.K., Stanley, R.D. & Starr, P. (2010) Using experiments and expert judgment to model catchability of Pacific rockfishes in trawl surveys, with application to bocaccio (Sebastes paucispinis) off British Columbia. Fishery Bulletin, 108, 282304.
  • McCarthy, M.A. (2007) Bayesian Methods for Ecology. Cambridge University Press, Cambridge.
  • McCarthy, M.A. & Burgman, M.A. (1995) Coping with uncertainty in forest wildlife planning. Forest Ecology and Management, 74, 2336.
  • McCarthy, M.A. & Masters, P. (2005) Profiting from prior information in Bayesian analyses of ecological data. Journal of Applied Ecology, 42, 10121019.
  • McIntosh, B.S., Muetzelfeldt, R.I., Legg, C.J., Mazzoleni, S. & Csontos, P. (2003) Reasoning with direction and rate of change in vegetation state transition modelling. Environmental Modelling and Software, 18, 915927.
  • Morgan, M.G. & Henrion, M. (1990a) Chapter 7. Perfoming probability assessment. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. (eds M.G.Morgan & M.Henrion), pp. 141168. Cambridge University Press, Cambridge.
  • Morgan, M.G. & Henrion, M. (1990b) Chapter 6. Human judgement about and with uncertainty. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. (eds M.G.Morgan & M.Henrion), pp. 102136. Cambridge University Press, Cambridge.
  • Morgan, M.G., Pitelka, L.F. & Shevliakova, E. (2001) Elicitation of expert judgments of climate change impacts on forest ecosystems. Climatic Change, 49, 279307.
  • Muir, A.M., Edwards, S.A. & Dickens, M.J. (1995) Description and Conservation Status of the Vegetation of the Box-Ironbark Ecosystem in Victoria. Department of Conservation and Natural Resources, East Melbourne.
  • Murray, J.V., Goldizen, A.W., O’Leary, R.A., McAlpine, C.A., Possingham, H.P. & Choy, S.L. (2009) How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? A case study using brush-tailed rock-wallabies Petrogale penicillata. Journal of Applied Ecology, 46, 842851.
  • Newman, L.A. (1961) The Box-Ironbark Forests of Victoria, Australia. Forest Commission Victoria, Melbourne.
  • Nicholson, E. & Possingham, H.P. (2007) Making conservation decision under uncertainty for the persistence of multiple species. Ecological Applications, 17, 251265.
  • O’Hagan, A. (1998) Eliciting expert beliefs in substantial practical applications. The Statistician, 47, 2135.
  • O’Neill, S.J., Osborn, T.J., Hulme, M., Lorenzoni, I. & Watkinson, A.R. (2008) Using expert knowledge to assess uncertainties in future polar bear populations under climate change. Journal of Applied Ecology, 45, 16491659.
  • Pearce, J.L., Cherry, K., Drielsma, M., Ferrier, S. & Whish, G. (2001) Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution. Journal of Applied Ecology, 38, 412424.
  • Pellikka, J., Kuikka, S., Linden, H. & Varis, O. (2005) The role of game management in wildlife populations: uncertainty analysis of expert knowledge. European Journal of Wildlife Research, 51, 4859.
  • Pinheiro, J., Bates, D.M., DebRoy, S., Sarkar, D. & R Development Core Team. (2008) nlme: Linear and Non-Linear Mixed-Effects Models. R package version 3.1-86.
  • Plummer, M., Best, N., Cowles, K. & Vines, K. (2008) Coda: Output Analysis and Diagnostics for Markov Chain Monte Carlo Simulations. R package version 0.13-1.
  • Quinn, G. & Keough, M. (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, UK.
  • R Development Core Team. (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Raulier, F., Pothier, D. & Bernier, P. (2003) Predicting the effect of thinning on growth of dense balsam fir stands using a process-based tree growth model. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 33, 509520.
  • Regan, H.M., Colyvan, M. & Burgman, M.A. (2002) A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological Applications, 12, 618628.
  • Smith, G.C., Parrott, D. & Robertson, P.A. (2008) Managing wildlife populations with uncertainty: cormorants Phalacrocorax carbo. Journal of Applied Ecology, 45, 16751682.
  • Soderquist, T.R. (1999) Tree Hollows of the Box-Ironbark Forest: Analyses of Ecological Data from the Box-Ironbark Timber Assessment in the Bendigo Forest Management Area and Pyrenees Range. Department of Natural Resources and Environment, East Melbourne, Victoria.
  • Soll, J.B. & Klayman, J. (2004) Overconfidence in interval estimates. Journal of Experimental Psychology, 30, 299314.
  • Speirs-Bridge, A., Fidler, F., McBride, M., Flander, L., Cumming, G. & Burgman, M. (2010) Reducing overconfidence in the interval judgments of experts. Risk Analysis, 30, 512523.
  • Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Piani, C., Sexton, D., Smith, L.A., Spicer, R.A. & Allen, A.J.T.M.R. (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406.
  • Sutherland, W.J. (2006) Predicting the ecological consequences of environmental change: a review of the methods. Journal of Applied Ecology, 43, 599616.
  • Sutton, M. (2000) Box-Ironbark Timber Resource Analysis. Department of Natural Resources and Environment, Victoria.
  • Teigen, K.H. & Jørgensen, M. (2005) When 90% confidence intervals are 50% certain: On the credibility of credible intervals. Applied Cognitive Psychology, 19, 455475.
  • Vavra, M., Hemstrom, M.A. & Wisdom, M. (2007) Modeling the effects of herbivores on the abundance of forest overstory states using a state-transition approach in the upper Grande Ronde River Basin, Oregon, USA. Landscape and Urban Planning, 80, 212222.
  • Vose, D. (1996) Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modelling. John Wiley & Sons Ltd, West Sussex.
  • Wales, B.C., Suring, L.H. & Hemstrom, M.A. (2007) Modeling potential outcomes of fire and fuel management scenarios on the structure of forested habitats in northeast Oregon, USA. Landscape and Urban Planning, 80, 223236.
  • Walker, K.D., Evans, J.S. & MacIntosh, D. (2001) Use of expert judgment in exposure assessment: Part 1. Characterization of personal exposure to benzene. Journal of Exposure Analysis and Environmental Epidemiology, 11, 308322.
  • Walley, P. (2000) Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24, 125148.
  • Westoby, M., Walker, B. & Noy-Meir, I. (1989) Opportunistic management for rangelands not at equilibrium. Journal of Range Management, 42, 266274.
  • Wintle, B.A., McCarthy, M.A., Volinsky, C.T. & Kavanagh, R.P. (2003) The use of Bayesian model averaging to better represent uncertainty in ecological models. Conservation Biology, 17, 15791590.
  • Yaniv, I. & Foster, D.P. (1995) Graininess of judgment under uncertainty: An accuracy-informativeness trade-off. Journal of Experimental Psychology, 124, 424432.