Comparative traits of Lactobacillus brevis, Lact. fructivorans and Leuconostoc oenos immobilized cells for the control of malo-lactic fermentation in wine



Decarboxylation of L-malic to L-lactic acid by heterolactic bacteria and formation of secondary products in table wine were studied using immobilized cells of Lactobacillus brevis, Lact. fructivorans and two strains of Leuconostoc oenos in a continuous flow bioreactor. The conversion ratios were 51.2–53.9%, while the decreases in malic and titratable acidity were equivalent to 62.1–74.7% and 16.4–27.3%, respectively. Upon completion of malo-lactic fermentation, pH increased from 3.15 to 3.28–3.35. The conversion ratio and bioreactor efficiency differed according to the strain tested. Gel beads, prepared with cells immobilized in 2% K-carrageenan in the presence of 5% bentonite silica, contained up to 7–8 × 1010 cfu/g; the concentration of viable cells was relatively stable over 24–48 h bioreactor operation when Lact. brevis was used and decreased in all other cases. The formation of secondary products affecting wine sensory properties, particularly volatile acids and aromatic compounds, was strain-dependent.