SEARCH

SEARCH BY CITATION

References

  • Akoka, S., Barantin, L. and Trierweiler, M. (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71, 25542557.
  • Barcenilla, A., Pryde, S.E., Martin, J.C., Duncan, S.H., Stewart, C.S., Henderson, C. and Flint, H.J. (2000) Phylogenetic relationships of dominant butyrate producing bacteria from the human gut. Appl Environ Microbiol 66, 16541661.
  • Bernalier, A., Doré, J. and Durand, M. (1999) Biochemistry of fermentation. In Colonic Microbiota, Nutrition and Health ed. Gibson, G.R. and Roberfroid, M. pp. 3754. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  • Counotte, G.H.M. and Prins, R.A (1981) Regulation of lactate metabolism in the rumen. Vet Res Commun 5, 101115.
  • Counotte, G.H.M., Prins, R.A., Janssen, H.A.M. and Debie, M.J.A. (1981) Role of Megasphaera elsdenii in the fermentation of DL-[2-13C]lactate in the rumen of dairy cattle. Appl Environ Microbiol 42, 649655.
  • Counotte, G.H.M., Lankhorst, A. and Prins, R.A. (1983) Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. J Anim Sci 56, 12221235.
  • Cummings, J.H. and Macfarlane, G.T. (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70, 443459.
  • Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P.E. and Macfarlane, G.T. (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.
  • Diez-Gonzalez, F., Bond, D.R., Jennings, E. and Russell, J.B. (1999) Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilisation, lactate production and phylogeny. Arch Microbiol 171, 324330.
  • Duncan, S.H., Barcenilla, A., Stewart, C.S., Pryde, S.E. and Flint, H.J. (2002) Acetate utilisation and butyryl CoA: acetate CoA transferase in human colonic bacteria. Appl Environ Microbiol 68, 51865190.
  • El Oufir, L., Barry, J-L., Flourié, B., Cloarec, D., Bornet, F. and Galmiche, J.-P. (1999) Relationships between transit time in man and in vitro fermentation of dietary fiber by faecal bacteria. Eur J Clin Nutr 53, 17.
  • Finegold, S.M., Attebery, H.R. and Sutter, V.L. (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27, 14561469.
  • Finegold, S.M., Sutter, V.L., Sugihara, P.T., Elder, H.A., Lehmann, S.M. and Phillips, R.L. (1977) Faecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr 30, 17811792.
  • Finegold, S.M, Sutter, V.L. and Mathison, G.E. (1983) Normal indigenous flora. In Human Intestinal Microflora in Health and Disease ed. Hentges, D.J. pp. 331. New York: Academic Press.
  • Franconi, J.M. (2000) NMR basic principles. In NMR in Microbiology, Theory and Applications ed. Barbotin, J.N. and Portais, J.C. pp. 126. Norfolk, VA: Horizon Scientific Press.
  • Gibson, G.R. and Wang, X. (1994) Enrichment of bifidobacteria from gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 118, 121128.
  • Gottschalk, G. (1979) Bacterial Metabolism. New York: Springer-Verlag.
  • Hashizume, K., Tsukahara, T., Yamada, K., Koyama, H. and Ushida, K. (2003) Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production. J Nutr 133, 31873190.
  • Hidaka, H., Eida, T., Takizawa, T., Tokunaga, T. and Tashiro, Y. (1986) Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora 5, 3750.
  • Holdeman, L.V., Cato, E.P. and Moore, W.E.C. (1977) Anaerobe Laboratory Manual, 4th edn. pp. 152. Backsburg, VA: Virginia Polytechnic Institute and State University Press.
  • Hove, H. and Mortensen, P.B. (1995) Colonic lactate metabolism and D-lactic acidosis. Dig Dis Sci 40, 320330.
  • Jouany, J-P. (1982) Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Aliments 2, 131144.
  • Kabel, M.A., Kortenoeven, L., Schols, H.A. and Voragen, A.G.J. (2002) In vitro fermentability of differently substituted xylo-oligosaccharides. J Agric Food Chem 50, 62056210.
  • Kanauchi, O., Fujiyama, Y., Mitsuyama, K., Araki, Y., Ishii, Y., Nakamura, T., Hitomi, Y., Agat, K. et al. (1999) Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers. Int J Mol Med 3, 175179.
  • Ladd, J.N. (1959) The fermentation of lactic acid by a gram-negative coccus. Biochemistry 71, 1622.
  • Le Blay, G., Michel, C., Blottière, H.M. and Cherbut, C. (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J Nutr 129, 22312235.
  • Le Blay, G.M., Michel, C.D., Blottière, H.M. and Cherbut, C.J. (2003) Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbia differently depending on the caecocolonic segment involved. J Appl Microbiol 94, 312320.
  • Macfarlane, G.T. and Englyst, H.N. (1986) Starch utilization by the human large intestinal microflora. J Appl Bacteriol 60, 195201.
  • Macfarlane, G.T. and Gibson, G.R. (1994) Metabolic activities of the normal colonic flora. In Human Health. The Contribution of Microorganisms ed. Gibson, S.A.W. pp. 1752. London: Springer-Verlag Press.
  • Macfarlane, S. and Macfarlane, G.T. (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62, 6772.
  • Macfarlane, G.T., Gibson, G.R. and Macfarlane, S. (1994) Short chain fatty acid and lactate production by human intestinal bacteria grown in batch and continuous culture. In Short Chain Fatty Acids ed. Binder, H.J., Cummings, J. and Soergel, K. pp. 4460. London: Kluwer Academic Publishers.
  • Mackie, R.I. and Gilchrist, F.M.C. (1979) Changes in lactate-producing and lactate-utilising bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a high concentrate diet. Appl Environ Microbiol 38, 422430.
  • Martin, L.M.J., Dumon, H.J.W. and Champ, M. (1998) Production of short chain fatty acids from resistant starch in a pig model. J Sci Food Agric 77, 7180.
  • McBurney, M.I. and Thompson, L.U. (1989) Effect of human faecal donor on in vitro fermentation variables. Scand J Gastroenterol 24, 359367.
  • McCartney, A.L. (2002) Application of molecular biological methods for studying probiotics and the gut flora. Br J Nutr 88, S29S37.
  • Michel, C., Lahaye, M., Bonnet, C., Mabeau, S and Barry, J.-L. (1996) In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr 75, 263280.
  • Michel, C., Kravtchencko, T.P., David, A., Gueneau, S., Koslowski, F. and Cherbut, C. (1998) In vitro prebiotic effects of Acacia gums on the human intestinal microbiota depends on both botanical origin and environmental pH. Anaerobe 4, 257266.
  • Moore, W.E.C. and Moore, L.H. (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61, 32023207.
  • Moreau, N.M., Goupry, S.M., Antignac, J.P., Monteau, F.J., Le Bizec, B.J., Champ, M.M., Martin, L.J. and Dumon, H.J. (2003) Simultaneous measurement of plasma concentrations and 13C-enrichment of short-chain fatty acids, lactic acid and ketone bodies by gas chromatography coupled to mass spectrometry. J Chromatogr B 784, 395403.
  • Newbold, C.J., Williams, A.G. and Chamberlain, D.G. (1987) The in vitro metabolism of d,l-lactic acid by rumen microorganisms. J Sci Food Agric 38, 918.
  • Pryde, S.E., Duncan, S.H., Hold, G.L., Stewart, C.S. and Flint, H.J. (2002) The microbiology of butyrate formation in the human colon: minireview. FEMS Microbiol Lett 217, 133139.
  • Salyers, A.A. (1995) Fermentation of polysaccharides by human colonic anaerobes. In Dietary Fibre: Mechanisms of Action in Human Physiology and Metabolism ed. Cherbut, C., Barry, J.-L., Lairon, D. and Durand, M. pp. 2936. London: John Libbey and Company Ltd.
  • Scheppach, W., Luehrs, H. and Menzel, T. (2001) Beneficial health effects of low digestible carbohydrate consumption. Br J Nutr 85, S23S30.
  • Schwiertz, A., Le Blay, G. and Blaut, M. (2000) Quantification of different Eubacterium spp. in human faecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 66, 375382.
  • Sharp, R. and Macfarlane, G.T. (2000) Chemostat enrichments of human feces with resistant starch are selective for adherent butyrate-producing clostridia at high dilution rates. Appl Environ Microbiol 66, 42124221.
  • Stevani, J., Grivet, J-P., Hannequart, G. and Durand, M. (1991) Glucose and lactate catabolism by bacteria of the pig large intestine and sheep rumen as assessed by 13C nuclear magnetic resonance. J Appl Bacteriol 71, 524530.
  • Tsukahara, T., Koyama, H., Okada, M. and Ushida, K. (2002) Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 132, 22292234.
  • Ushida, K., Hoshi, S. and Ajisaka, K. (2002) 13C-NMR studies on lactate metabolism in a porcine gut microbial ecosystem. Microb Ecol Health Dis 14, 241246.
  • Weaver, G.A., Krause, J.A., Miller, T.L. and Wolin, M.J. (1989) Constancy of glucose and starch fermentations by two different human faecal microbial communities. Gut 30, 1925.
  • Weaver, G.A., Krause, J.A., Miller, T.L. and Wolin, M.J. (1992) Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentaton rates correlate negatively with methanogenesis. Am J Clin Nutr 55, 7077.