SEARCH

SEARCH BY CITATION

References

  • Antunes, P.M., Rajcan, I. and Goss, M.J. (2006) Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max [L.] Merr.). Soil Biol Biochem 38, 533543.
  • Aoki, T., Akashi, T. and Ayabe, S. (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113, 475488.
  • Bartsev, A.V., Deakin, W.J., Boukli, N.M., Bickley, C., Malnoë, P., Stacey, G., Broughton, W.J. and Staehelin, C. (2004a) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defence reactions. Plant Physiol 134, 871879.
  • Bartsev, A., Kobayashi, H. and Broughton, W.J. (2004b) Rhizobial signals convert pathogens to symbionts at the legume interface. In Plant Microbiology ed. Gillings, M. and Holmes, A. pp. 1931. Abingdon, UK: Garland Science/BIOS Scientific.
  • Becker, A., Niehaus, K. and Pühler, A. (2000) The role of rhizobial extracellular polysaccharides (EPS) in the Sinorhizobium meliloti-alfalfa symbiosis. In Prokaryotic Nitrogen Fixation ed. Triplett, E.W. pp. 433447. Wymondham, UK: Horizon Scientific Press.
  • Becker, A., Fraysse, N. and Sharypova, L. (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant Microbe Interact 18, 899905.
  • Begum, A.A., Leibovitch, S., Migner, P. and Zhang, F. (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52, 15371543.
  • Bohlool, B.B. and Schmidt, E.L. (1974) Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185, 269271.
  • Bolanos-Vasquez, M.C. and Werner, D. (1997) Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris. Mol Plant Microbe Interact 10, 339346.
  • Breedfeld, M.W. and Miller, K.J. (1994) Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Mol Biol Rev 58, 145161.
  • Broughton, W.J., Hanin, M., Relić, B., Kopciñska, J., Golinowski, W., Simşek, S., Ojanen-Reuhs, T., Reuhs, B. et al. (2006) Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. J Bacteriol 188, 36543663.
  • van Brussel, A.A.N., Recourt, K., Pees, E., Spaink, H.P., Tak, T., Wijffelman, C.A., Kijne, J.W. and Lugtenberg, B.J.J. (1990) A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra. J Bacteriol 172, 53945401.
  • Chen, H.C., Higgins, J., Oresnik, I.J., Hynes, M.F., Natera, S., Djordjevic, M.A., Weinman, J.J. and Rolfe, B.G. (2000) Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011. Electrophoresis 21, 38333842.
  • Chen, X.-C., Feng, J., Hou, B.-H., Li, F.-Q., Li, Q. and Hong, G.-F. (2005) Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum. Nucleic Acids Res 33, 25402548.
  • Cooper, J.E. (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41, 162.
  • D’Haeze, W. and Holsters, M. (2002) Nod factor structures, responses and perception during initiation of nodule development. Glycobiology 12, 79R105R.
  • D’Haeze, W. and Holsters, M. (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12, 555561.
  • Dazzo, F.B. and Hubbell, H.D. (1975) Cross-reactive antigens and lectins as determinants of symbiotic specificity in the Rhizobium-clover association. Appl Microbiol 36, 10171033.
  • Dénarié, J., Debellé, F., Truchet, G. and Promé, J.-C. (1993) Rhizobium and legume nodulation: a molecular dialogue. In New Horizons in Nitrogen Fixation ed. Palacios, R., Mora, J. and Newton, W.E. pp. 1930. Dordrecht: Kluwer.
  • Denison, R.F. (2000) Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am Nat 156, 567576.
  • Denison, R.F. and Kiers, E.T. (2004) Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect 6, 12351239.
  • Downie, J.A. and Surin, B.P. (1990) Either of two nod gene loci can complement the nodulation defect of a nod deletion mutant of Rhizobium leguminosarum bv. viciae. Mol Gen Genet 222, 8186.
  • Duelli, D.M. and Noel, K.D. (1997) Compounds exuded by Phaseolus vulgaris that induce a modification of Rhizobium etli lipopolysaccharide. Mol Plant Microbe Interact 10, 903910.
  • Dunn, M.F., Pueppke, S.G. and Krishnan, H.B. (1992) The nod gene inducer genistein alters the composition and molecular mass distribution of extracellular polysaccharides produced by Rhizobium fredii USDA193. FEMS Microbiol Lett 97, 107112.
  • Fisher, R.F. and Long, S.R. (1993) Interactions of NodD at the nod box. NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J Mol Biol 233, 336348.
  • Forkmann, G. and Heller, W. (1999) Biosynthesis of flavonoids. In Comprehensive Natural Products Biochemistry, Vol. I ed. Sankawa, U. pp. 713748. Oxford: Elsevier.
  • Fraysse, N., Couderc, F. and Poinsot, V. (2003) Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270, 13651380.
  • Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A. and Perret, X. (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394401.
  • Fry, J., Wood, M. and Poole, P.S. (2001) Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14, 10161025.
  • Fujishige, N.A., Kapadia, N.N., De Hoff, P.L. and Hirsch, A.M. (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56, 195206.
  • Gagnon, H. and Ibrahim, R.K. (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini and Sinorhizobium meliloti. Mol Plant Microbe Interact 11, 988998.
  • Galbraith, M.P., Feng, S.Z., Borneman, J., Triplett, E.W., de Bruijn, F.J. and Rossbach, S. (1998) A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiol – UK 144, 29152924.
  • Geurts, R., Federova, E. and Bisseling, T. (2005) Nod factor signalling genes and their function in the early stages of infection. Curr Opin Plant Biol 8, 346352.
  • Goldmann, L., Lecouer, L., Message, B., De La Rue, M., Schoonejans, E. and Tepfer, D. (1994) Symbiotic plasmid genes essential to the catabolism of proline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti. FEMS Microbiol Lett 115, 305311.
  • González, J.E. and Marketon, M.M. (2003) Quorum sensing in nitrogen-fixing bacteria. Microbiol Mol Biol Rev 67, 574592.
  • Guerreiro, N., Redmond, J.W., Rolfe, B.G. and Djordjevic, M.A. (1997) New Rhizobium leguminosarum flavonoid-induced proteins revealed by proteome analysis of differentially displayed proteins. Mol Plant Microbe Interact 10, 506516.
  • Guerreiro, N., Djordjevic, M.A. and Rolfe, B.G. (1999) Proteome analysis of the model microsymbiont Sinorhizobium meliloti: isolation and characterisation of novel proteins. Electrophoresis 20, 818825.
  • Harwood, C.S. and Parales, R.E. (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50, 553590.
  • Heinrich, K., Gordon, D.M., Ryder, M.H. and Murphy, P.J. (1999) A rhizopine strain of Sinorhizobium meliloti remains at a competitive nodulation advantage after an extended period in the soil. Soil Biol Biochem 31, 10631065.
  • Heinz, E.B., Phillips, D.A. and Streit, W.R. (1999) BioS, a biotin-induced, stationary phase, and possible LysR-type regulator in Sinorhizobium meliloti. Mol Plant Microbe Interact 12, 803812.
  • Hirsch, A.M. (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2, 320326.
  • Hirsch, A.M., Lum, M.R. and Downie, J.A. (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol 127, 14841492.
  • Hubber, A., Vergunst, A.C., Sullivan, J.T., Hooykaas, P.J.J. and Ronson, C.W. (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54, 561574.
  • Jiang, G., Krishnan, A.H., Kim, Y.-W., Wacek, T.J. and Krishnan, H.B. (2001) A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 183, 25952604.
  • Jiminéz-Zurdo, J.I., van Dillewijn, P., Soto, M.J., de Felipe, M.R., Olivares, J. and Toro, N. (1995) Characterisation of a Rhizobium meliloti proline dehydrogenase mutant altered in nodulation efficiency and competitiveness on alfalfa roots. Mol Plant Microbe Interact 8, 492498.
  • Kannenberg, E. and Carlson, R.W. (2005) An abundance of Nod factors. Chem Biol 12, 956958.
  • Kannenberg, E.L., Perzl, M. and Härtner, T. (1995) The occurrence of hopanoid lipids in Bradyrhizobium bacteria. FEMS Microbiol Lett 127, 255262.
  • Kiers, E.T., Rousseau, R.A., West, S.A. and Denison, R.F. (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425, 7881.
  • Kistner, C., Winzer, T., Pitzschke, A., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N. et al. (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17, 22172229.
  • Kobayashi, H., Naciri-Graven, Y., Broughton, W.J. and Perret, X. (2004) Flavonoids induce temporal shifts in gene expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51, 335347.
  • Krishnan, H.B., Lorio, J., Kim, W.S., Jiang, G.Q., Kim, K.Y., De Boer, M. and Pueppke, S.G. (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16, 617625.
  • Le Strange, K.K., Bender, G.L., Djordjevic, M.A., Rolfe, B.G. and Redmond, J.W. (1990) The Rhizobium strain NGR234 nodD1 gene product responds to activation by the simple phenolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol Plant Microbe Interact 3, 214220.
  • Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J.-C. and Dénarié, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781784.
  • Loh, J., Carlson, R.W., York, W.S. and Stacey, G. (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci USA 99, 1444614451.
  • López-Lara, I.M., van den Berg, J.D.J., Thomas-Oates, J.E., Glushka, J., Lugtenberg, B.J.J. and Spaink, H.P. (1995) Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol Microbiol 15, 627638.
  • de Maagd, R.A., Spaink, H.P., Pees, E., Mulders, I.H.M., Wijfjes, A., Wijffelman, C.A., Okker, R.J.H. and Lugtenberg, B.J.J. (1989a) Localization and symbiotic function of a region on the Rhizobium leguminosarum Sym plasmid Pr11ji responsible for a secreted, flavonoid-inducible 50 kilodalton protein. J Bacteriol 171, 11511157.
  • de Maagd, R.A., Wijfjes, A.H.M., Spaink, H.P., Ruiz-Sainz, J.E., Wijffelman, C.A., Okker, R.J.H. and Lugtenberg, B.J.J. (1989b) nodO, a new nod gene of the Rhizobium leguminosarum biovar viciae Sym plasmid Pr11ji, encodes a secreted protein. J Bacteriol 171, 67646770.
  • Mabood, F., Souleimanov, A., Khan, W. and Smith, D.L. (2006) Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem 44, 759765.
  • Marie, C., Broughton, W.J. and Deakin, W.J. (2001) Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 4, 336342.
  • Marie, C., Deakin, W.J., Viprey, V., Kopciñska, J., Golinowski, W., Krishnan, H.B., Perret, X. and Broughton, W.J. (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interact 16, 743751.
  • Mathesius, U., Schlaman, H.R.M., Spaink, H.P., Sautter, C., Rolfe, B.G. and Djordjevic, M.A. (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14, 2334.
  • Mathesius, U., Mulders, S., Gao, M.S., Teplitski, M., Caetano-Anólles, G., Rolfe, B.G. and Bauer, W.D. (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100, 14441449.
  • Mathis, R., Van Gijsegem, F., De Rycke, R., D’Haeze, W., Van Maelsaeke, E., Anthonio, E., Van Montagu, M., Holsters, M. et al. (2005) Lipopolysaccharides as a communication signal for progression of legume endosymbiosis. Proc Natl Acad Sci USA 102, 26552660.
  • Matiru, V.N. and Dakora, F.D. (2005) Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals. New Phytol 165, 847855.
  • Miklashevichs, E., Röhrig, H., Schell, J. and Schmidt, J. (2001) Perception and transduction of rhizobial Nod factors. Crit Rev Plant Sci 20, 373394.
  • Morón, B., Soria-Diaz, M.E., Ault, J., Verroios, G., Sadaf, N., Rodríguez-Navarro, D.N., Gil-Serrano, A., Thomas-Oates, J. et al. (2005) Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem Biol 12, 10291040.
  • Mulder, L., Hogg, B., Bersoult, A. and Cullimore, J.V. (2005) Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiol Plant 123, 207218.
  • Murphy, P.J., Wexler, M., Grzemski, W., Rao, J.P. and Gordon, D. (1995) Rhizopines: their role in symbiosis and competition. Soil Biol Biochem 27, 525529.
  • Niehaus, K. and Becker, A. (1998) The role of microbial surface polysaccharides in the Rhizobium-legume symbiosis. Subcell Biochem 29, 73116.
  • Noel, K.D. and Duelli, D.M. (2000) Rhizobium lipopolysaccharide and its role in symbiosis. In Prokaryotic Nitrogen Fixation ed. Triplett, E.W. pp. 415431. Wymondham, UK: Horizon Scientific Press.
  • Oldroyd, G.E.D. (2007) Nodules and hormones. Science 315, 5253.
  • Oldroyd, G.E.D., Harrison, M.J. and Udvardi, M. (2005) Peace talks and trade deals. Keys to long-term harmony in legume–microbe symbioses. Plant Physiol 137, 12051210.
  • Oresnik, I.J., Pacarynuk, L.A., O’Brien, S.A.P., Yost, C.K. and Hynes, M.F. (1998) Plasmid-encoded catabolic loci in Rhizobium leguminosarum bv. trifolii. Evidence for a plant-inducible rhamnose utilisation locus involved in competition for nodulation. Mol Plant Microbe Interact 11, 11751185.
  • Ovtsyna, A. and Staehelin, C. (2003) Bacterial signals required for the Rhizobium-legume symbiosis. Recent Res Dev Microbiol 7, 631648.
  • Parke, D. (1997) Acquisition, reorganization, and merger of genes: novel management of the beta-ketoadipate pathway in Agrobacterium tumefaciens. FEMS Microbiol Lett 146, 312.
  • Parke, D. and Ornston, L.N. (1986) Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. J Bacteriol 165, 288292.
  • Parke, D., Rynne, F. and Glenn, A. (1991) Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. J Bacteriol 173, 55465550.
  • Peck, M.C., Fisher, R.F. and Long, S.R. (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188, 54175427.
  • Perret, X., Freiberg, C., Rosenthal, A., Broughton, W.J. and Fellay, R. (1999) High resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32, 415425.
  • Perret, X., Staehelin, C. and Broughton, W.J. (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64, 180201.
  • Perzl, M., Müller, P., Poralla, K. and Kannenberg, E.L. (1997) Squalene-hopene cyclase from Bradyrhizobium japonicum: cloning, expression, sequence analysis and comparison to other terpenoid classes. Microbiology –UK 143, 12351242.
  • Perzl, M., Reipen, I.G., Schmitz, S., Poralla, K., Sahm, H., Sprenger, G.A. and Kannenberg, E.L. (1998) Cloning of conserved genes from Zymomonas mobilis and Bradyrhizobium japonicum that function in the biosynthesis of hopanoid lipids. Biochim Biophys Acta 1393, 108118.
  • Peters, N.K., Frost, J.W. and Long, S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233, 977980.
  • Phillips, D.A., Joseph, C.M. and Maxwell, C.A. (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99, 15261531.
  • Phillips, D.A., Joseph, C.M., Yang, G.-P., Martínez-Romero, E., Sanborn, J.R. and Volpin, H. (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci USA 96, 1227512280.
  • Price, N.P.J. (1999) Carbohydrate determinants of Rhizobium-legume symbioses. Carbohyd Res 317, 19.
  • Prinsen, E., Chauvaux, N., Schmidt, J., John, M., Wieneke, U., Degreef, J., Schell, J. and Van Onckelen, H. (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282, 5355.
  • Rao, J.R. and Cooper, J.E. (1994) Rhizobia catabolise nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176, 54095413.
  • Rao, J.R., Sharma, N.D., Hamilton, J.T.G., Boyd, D.R. and Cooper, J.E. (1991) Biotransformation of the pentahydroxyflavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl Environ Microbiol 57, 15631565.
  • Redmond, J.W., Batley, M., Djordjevic, M.A., Innes, R.W., Kuempel, P.L. and Rolfe, B.G. (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323, 632635.
  • Relić, B., Perret, X., Estrada-Garcia, M.T., Kopciñska, J., Golinowski, W., Krishnan, H.B., Pueppke, S.G. and Broughton, W.J. (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13, 171178.
  • Reuhs, B.L., Kim, J.S., Badgett, A. and Carlson, R.W. (1994) Production of cell-associated polysaccharides of Rhizobium fredii USDA205 is modulated by apigenin and host root extract. Mol Plant Microbe Interact 7, 240247.
  • van Rhijn, P., Luyten, E., Vlassak, K. and Vanderleyden, J. (1996) Isolation and characterization of a pSym locus of Rhizobium sp. BR816 that extends nodulation ability of narrow host range Phaseolus vulgaris symbionts to Leucaena leucocephala. Mol Plant Microbe Interact 9, 7477.
  • Rosas, S., Soria, R., Correa, N. and Abdala, G. (1998) Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol 38, 11611168.
  • Saeki, K. and Kouchi, H. (2000) The lotus symbiont, Mesorhizobium loti: molecular genetic techniques and application. J Plant Res 113, 457465.
  • Schlaman, H.R.M., Phillips, D.A. and Kondorosi, E. (1998) Genetic organisation and transcriptional regulation of rhizobial nodulation genes. In The Rhizobiaceae ed. Spaink, H.P., Kondorosi, A. and Hooykaas, P.J.J. pp. 361386. Dordrecht: Kluwer.
  • Schmidt, P.E., Broughton, W.J. and Werner, D. (1994) Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol Plant Microbe Interact 7, 384390.
  • Shaw, L.J., Morris, P. and Hooker, J.E. (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8, 18671880.
  • Simms, E.L., Taylor, D.L., Povich, J., Shefferson, R.P., Sachs, J.L., Urbina, M. and Tausczik, Y. (2006) An empirical test of partner choice mechanisms in a wild legume-rhizobium interaction. Proc R Soc Ser B 273, 7781.
  • Soedarjo, M. and Borthakur, D. (1998) Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem 30, 16051613.
  • Soto, M.J., Sanjuán, J. and Olivares, J. (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology – UK 152, 31673174.
  • Spaink, H.P. (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54, 257288.
  • Staehelin, C., Forsberg, L.S., D’Haeze, W., Gao, M.-Y., Carlson, R.W., Xie, Z.-P., Pellock, B.J., Jones, K.M. et al. (2006) Exo-oligosaccharides of Rhizobium sp. are required for symbiosis with various legumes. J Bacteriol 188, 61686178.
  • Steele, H.L., Werner, D. and Cooper, J.E. (1999) Flavonoids in seed and root exudates of Lotus pedunculatus and their biotransformation by Mesorhizobium loti. Physiol Plant 107, 251258.
  • Streit, W.R., Joseph, C.M. and Phillips, D.A. (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9, 330338.
  • Subramanian, S., Stacey, G. and Yu, O. (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48, 261273.
  • Süß, C., Hempel, J., Zehner, S., Krause, A., Patschkowski, T. and Göttfert, M. (2006) Identification of genistein-inducible and type III-secreted proteins of Bradyrhizobium japonicum. J Biotechnol 126, 6977.
  • Taylor, L.P. and Grotewold, E. (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8, 317323.
  • Theunis, M., Kobayashi, H., Broughton, W.J. and Prinsen, E. (2004) Flavonoids, NodD1, NodD2, and nod box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17, 11531161.
  • Viprey, V., Del Greco, A., Golinowski, W., Perret, X. and Broughton, W.J. (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28, 13811389.
  • Vlassak, K.M., Luyten, E., Verreth, C., van Rhijn, P., Bisseling, T. and Vanderleyden, J. (1998) The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Mol Plant Microbe Interact. 11, 383392.
  • Walker, S.A. and Downie, J.A. (2000) Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol Plant Microbe Interact 13, 754762.
  • Wasson, A.P., Pellerone, F.I. and Mathesius, U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 16171629.
  • Yost, C.K., Rath, A.M., Noel, T.C. and Hynes, M.F. (2006) Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiol – UK 152, 20612074.
  • Yuen, J.P.Y., Cassini, S.T., De Oliveira, T.T., Nagem, T.J. and Stacey, G. (1995) Xanthone induction of nod gene expression in Bradyrhizobium japonicum. Symbiosis 19, 131140.
  • Zhang, X.-S. and Cheng, H.-P. (2006) Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen. Appl Environ Microbiol 72, 27382748.