SEARCH

SEARCH BY CITATION

References

  • Anthony, J.R., Warczak, K.L. and Donohue, T.J. (2005) A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci USA 102, 65026507.
  • Blankenship, R.E., Madigan, M.T. and Bauer, C.E. (1995) Anoxygenic Photosynthetic Bacteria. Boston: Kluwer Academic Publishers.
  • Bond, D.R. and Lovley, D.R. (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69, 15481555.
  • Bond, D.R. and Lovley, D.R. (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71, 21862189.
  • Bond, D.R., Holmes, D.E., Tender, L.M. and Lovley, D.R. (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483485.
  • Cheng, S., Liu, H. and Logan, B.E. (2006) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40, 24262432.
  • Fascetti, E. and Todini, O. (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl Microbiol Biotechnol 44, 300305.
  • Fascetti, E., D’Addario, E., Todini, O. and Robertiello, A. (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23, 753760.
  • Gest, H. and Kamen, M. (1949) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109, 558559.
  • Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S. et al. (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103, 1135811363.
  • He, D.L., Bultel, Y., Magnin, J.P., Roux, C. and Willison, J.C. (2005a) Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. J Power Sour 141, 1923.
  • He, Z., Minteer, S.D. and Angenent, L.T. (2005b) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39, 52625267.
  • Holmes, D.E., Bond, D.R., O’Neill, R.A., Reimers, C.E., Tender, L.R. and Lovley, D.R. (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48, 178190.
  • Kapdan, I.K. and Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38, 569582.
  • Kim, J.R., Min, B. and Logan, B.E. (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68, 2330.
  • Kim, M.S., Baek, J.S. and Lee, J.K. (2006) Comparison of H-2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energy 31, 121127.
  • Koku, H., Eroglu, I., Gunduz, U., Yucel, M. and Turker, L. (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 27, 13151329.
  • Lane, N. (2006) What can’t bacteria do? Nature 441, 274277.
  • Liu, H. and Logan, B.E. (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38, 40404046.
  • Liu, H., Ramnarayanan, R. and Logan, B.E. (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38, 22812285.
  • Liu, H., Cheng, S.A. and Logan, B.E. (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39, 658662.
  • Logan, B. (2005) Editorial. Generating electricity from wastewater treatment. Water Environ Res 77, 209.
  • Logan, B.E., Murano, C., Scott, K., Gray, N.D. and Head, I.M. (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39, 942952.
  • Logan, B.E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. et al. (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40, 51815192.
  • Mackenzie, C., Choudhary, M., Larimer, F.W., Predki, P.F., Stilwagen, S., Armitage, J.P., Barber, R.D., Donohue, T.J. et al. (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynthesis Res 70, 1941.
  • McEwan, A., Weizstein, H., Meyer, O., Jackson, J. and Ferguson, S. (1987) The periplasmic nitrate reductase of Rhodobacter capsulatus: purification, characterization and distinction from a single reductase for trimethylamine-N-oxide, dimethylsulfoxide and chlorate. Arch Microbiol 147, 340345.
  • Melis, A. (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 27, 12171228.
  • Min, B. and Logan, B.E. (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38, 58095814.
  • Min, B., Kim, J.R., Oh, S.E., Regan, J.M. and Logan, B.E. (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39, 49614968.
  • Nandi, R. and Sengupta, S. (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24, 6184.
  • Nath, K. and Das, D. (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65, 520529.
  • Niessen, J., Schroder, U., Harnisch, F. and Scholz, F. (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol 41, 286290.
  • Oh, S.E. and Logan, B.E. (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70, 162169.
  • Paoli, G.C., Vichivanives, P. and Tabita, F.R. (1998) Physiological control and regulation of the Rhodobacter capsulatus cbb operons. J Bacteriol 180, 42584269.
  • Park, D.H. and Zeikus, J.G. (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81, 348355.
  • Park, D.H., Laivenieks, M., Guettler, M.V., Jain, M.K. and Zeikus, J.G. (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65, 29122917.
  • Phung, N.T., Lee, J., Kang, K.H., Chang, I.S., Gadd, G.M. and Kim, B.H. (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233, 7782.
  • Rabaey, K. and Verstraete, W. (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23, 291298.
  • Rabaey, K., Lissens, G., Siciliano, S.D. and Verstraete, W. (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25, 15311535.
  • Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M. and Verstraete, W. (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70, 53735382.
  • Rabaey, K., Boon, N., Hofte, M. and Verstraete, W. (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39, 34013408.
  • Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T. and Lovley, D.R. (2005) Extracellular electron transfer via microbial nanowires. Nature 435, 10981101.
  • Rey, F.E., Heiniger, E.K. and Harwood, C.S. (2007) Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73, 16651671.
  • Richardson, D., King, G., Kelly, D., McEwan, A., Ferguson, S. and Jackson, J. (1988) The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on proprionate or butyrate. Arch Microbiol 150, 131137.
  • Richaud, P., Colbeau, A., Toussaint, B. and Vignais, P.M. (1991) Identification and sequence analysis of the hupR1 gene, which encodes a response regulator of the NtrC family required for hydrogenase expression in Rhodobacter capsulatus. J Bacteriol 173, 59285932.
  • Rittmann, B.E. and McCarty, P.L. (2001) Environmental Biotechnology: Principles and Applications. Boston: McGraw-Hill.
  • Rosenbaum, M., Schroder, U. and Scholz, F. (2005a) In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol 39, 63286333.
  • Rosenbaum, M., Schroder, U. and Scholz, F. (2005b) Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl Microbiol Biotechnol 68, 753756.
  • Rosenbaum, M., Zhao, F., Schroder, U. and Scholz, F. (2006) Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angewandte Chemie-Int Edn 45, 66586661.
  • Schroder, U., Niessen, J. and Scholz, F. (2003) A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie-Int Edn 42, 28802883.
  • Sistrom, W.R. (1960) A requirement for sodium in the growth of Rhodopseudomonas sphaeroides. Gen Microbiol 22, 778785.
  • Takabatake, H., Suzuki, K., Ko, I.B. and Noike, T. (2004) Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresour Technol 95, 151158.
  • Tavano, C.L., Podevels, A. and Donohue, T.J. (2005) Gene products required to recycle reducing power produced under photosynthetic conditions. J Bacteriol 187, 52495258.
  • Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J. et al. (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20, 821825.
  • Tichi, M.A. and Tabita, F.R. (2001) Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. J Bacteriol 183, 63446354.
  • US Department of Energy. (2005a) Annual Progress Report – Fuel Cells ( http://www.eere.energy.gov/hydrogenandfuelcells/annual_reports.html ).
  • US Department of Energy. (2005b). Basic Research Needs for Solar Energy Utilization ( http://www.sc.doe.gov/production/bes/reports/abstracts.html#SEU ).
  • Vignais, P.M., Colbeau, A., Willison, J.C. and Jouanneau, Y. (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Advan Microb Physiol 26, 155234.
  • Yagishita, T., Sawayama, S., Tsukahara, K.I. and Ogi, T. (1998) Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles. J Fermentation Bioeng 85, 546549.
  • Yokoi, H., Mori, S., Hirose, J., Hayashi, S. and Takasaki, Y. (1998) H-2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20, 895899.
  • Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P. and Herrmann, I. (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40, 51935199.
  • Zhu, H.G., Wakayama, T., Asada, Y. and Miyake, J. (2001) Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4+. Int J Hydrogen Energy 26, 11491154.
  • Zurrer, H. and Bachofen, R. (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37, 789793.