SEARCH

SEARCH BY CITATION

References

  • Adya, A.K., Canetta, E. and Walker, G.M. (2006) Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe. FEMS Yeast Res 6, 120128.
  • Air Liquide (2002) Gas Encyclopedia. Amsterdam: Elsevier Science.
  • Alwazeer, D., Delbeau, C., Divies, C. and Cachon, R. (2003) Use of redox potential modification by gas improves microbial quality, color retention, and ascorbic acid stability of pasteurized orange juice. Int J Food Microbiol 89, 2129.
  • Andreeva, E.A. and Rabotnova, I.L. (1978) Effect of the redox potential on the growth of aerobic microorganisms. Mikrobiologiia 47, 637643.
  • Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M. and Adler, L. (1997) The two isoenzymes for yeast NAD+-dependent glycerol-3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO 16, 21792187.
  • Bagramyan, K., Galstyan, A. and Trchounian, A. (2000) Redox potential is a determinant in the Escherichia coli anaerobic fermentative growth and survival: effects of impermeable oxidant. Bioelectrochemistry 51, 151156.
  • Bakker, B.M., Overkamp, K.M., Van Maris, A.J.A., Kotter, P., Luttik, M.A.H., Van Dijken, J.P. and Pronk, J.T. (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25, 1537.
  • Barker, M.G. and Smart, K.A. (2005) Morphological changes associated with the cellular aging of a brewing yeast strain. J Am Soc Brew Chem 54, 121126.
  • Berovic, M. and Herga, M. (2007) Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation. Biotechnol Lett 29, 891894.
  • Bohlscheid, J.C., Fellman, J.K., Wang, X.D., Ansen, D. and Edwards, C.G. (2007) The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations. J Appl Microbiol 102, 390400.
  • Bourel, G., Henini, S., Diviès, C. and Garmyn, C. (2003) The response of Leuconostoc mesenteroides to low external oxidoreduction potential generated by hydrogen gas. J Appl Microbiol 94, 280288.
  • Brondijk, H., Konings, W. and Poolman, B. (2001) Regulation of maltose transport in Saccharomyces cerevisiae. Arch Microbiol 176, 96105.
  • B.V. Alfenore, S., Molina-Jouve, C., Guillouet, S., Uribelarrea, J.-L., Goma, G. and Benbadis, L. (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60, 6772.
  • Cachon, R., Capelle, N., Divies, C. and Prost, L. (2002) Method for culturing micro-organisms in reducing condition obtained by a gas stream. World patent 0,202,748, 10 January 2002.
  • Carmel-Harel, O. and Storz, G. (2000) Roles of the glutathione- and thioredoxine-dependant reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54, 439461.
  • Chu, B.C.H. and Lee, H. (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 5, 425441.
  • Coelho, M.A.Z., Belo, I., Pinheiro, R., Amaral, A.L., Mota, M., Coutinho, J.A.P. and Ferreira, E.C. (2004) Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Appl Microbiol Biotechnol 66, 318324.
  • Cordier, H., Mendes, F., Vasconcelos, I. and Francois, J.M. (2007) A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng 9, 364378.
  • Van Dijken, J.P. and Scheffers, W.A. (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32, 199224.
  • Van Dijken, J.P., Weusthuis, R.A. and Pronk, J.T. (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek 63, 343352.
  • Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V. and Dawes, I.W. (2005) Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5, 12151228.
  • Duboc, P. and Stockar, U. (1998) Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotechnol Bioeng 58, 428439.
  • Espindola, A.D.S., Gomes, D.S., Panek, A.D. and Eleutherio, E.C.A. (2003) The role of glutathione in yeast dehydration tolerance. Cryobiology 47, 236241.
  • Feron, G., Dufosse, L., Pierard, E., Bonnarme, P., Quere, J.L. and Spinnler, H. (1996) Production, identification, and toxicity of (gamma)-decalactone and 4-hydroxydecanoic acid from Sporidiobolus spp. Appl Environ Microbiol 62, 28262831.
  • Feron, G., Mauvais, G., Lherminier, J., Michel, J., Wang, X.-D., Viel, C. and Cachon, R. (2007) Metabolism of fatty acid in yeast: addition of reducing agents to the reaction medium influences beta-oxidoreduction activities, gama-decalactone production and cell ultrastructure in Sproridiobolus ruinenii cultivated on ricinoleic acid methyl ester. Can J Microbiol 53, 738749.
  • Fornairon-Bonnefond, C., Aguera, E., Deytieux, C., Sablayrolles, J.M. and Salmon, J.M. (2003) Impact of oxygen addition during enological fermentation on sterol contents in yeast lees and their reactivity towards oxygen. J Biosci Bioeng 95, 496503.
  • Franzén, C.J. (2003) Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast 20, 117132.
  • Frick, O. and Wittmann, C. (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microb Cell Fact 4, 30.
  • Garrigues, C., Loubiere, P., Lindley, N.D. and Cocaign-Bousquet, M. (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179, 52825287.
  • Geertman, J.-M.A., Van Maris, A.J.A., Van Dijken, J.P. and Pronk, J.T. (2006) Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Metab Eng 8, 532542.
  • George, S.M. and Peck, M.W. (1998) Redox potential affects the measured heat resistance of Escherichia coli O157:H7 independently of oxygen concentration. Lett Appl Microbiol 27, 313317.
  • George, S.M., Richardson, L.C.C., Pol, I.E. and Peck, M.W. (1998) Effect of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157/H7, Salmonella enteritidis and Listeria monocytogenes. J Appl Microbiol 84, 903909.
  • Gill, R.T., Cha, H.J., Jain, A., Rao, G. and Bentley, W.E. (1998) Generating controlled reducing environments in aerobic recombinant Escherichia coli fermentations: effects on cell growth, oxygen uptake, heat shock protein expression, and in vivo CAT activity. Biotechnol Bioeng 59, 248259.
  • De Graef, M.R., Alexeeva, S., Snoep, J.L. and Teixeira de Mattos, M.J. (1999) The steady-state internal redox state (NADH/NAD+) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181, 23512357.
  • Guedon, E., Payot, S., Desvaux, M. and Petitdemange, H. (1999) Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol 181, 32623269.
  • Hansen, J. and Kielland-Brandt, M.C. (1996a) Inactivation of MET2 in brewer's yeast increases the level of sulfite in beer. J Biotechnol 50, 7587.
  • Hansen, J. and Kielland-Brandt, M.C. (1996b) Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production. Nat Biotechnol 14, 15871591.
  • Heux, S., Cachon, R. and Dequin, S. (2006a) Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab Eng 8, 303314.
  • Heux, S., Sablayrolles, J.-M., Cachon, R. and Dequin, S. (2006b) Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions. Appl Environ Microbiol 72, 58225828.
  • Hewitt, L.F. (1936) Oxidation–Reduction Potentials in Bacteriology and Biochemistry, 4th edn. London, UK: London County Council.
  • Hsu, J.C. (1996) Multiple Comparisons, Theory and Methods. New York: Chapman & Hall.
  • Husnika, J.I., Volschenkb, H., Bauerc, J., Colavizzad, D., Luoa, Z. and Van Vuurena, H.J.J. (2006) Metabolic engineering of malolactic wine yeast. Metab Eng 8, 315323.
  • Husson, F., Tu, V.P., Santiago-Gomez, M., Cachon, R., Feron, G., Nicaud, J.-M., Kermasha, S. and Belin, J.-M. (2006) Effect of redox potential on the growth of Yarrowia lipolytica and the biosynthesis and activity of heterologous hydroperoxide lyase. J Mol Catal B: Enzymatic 39, 179183.
  • Hwang, C., Lodish, H.F. and Sinskey, A.J. (1995) Measurement of glutathione redox state in cytosol and secretory pathway of cultured cells. Methods Enzymol 251, 212221.
  • Jacob, H.-E. (1970) Redox potential. In Methods in Microbiolgy ed . Noris, J.R. and Ribbons, D.W. Vol. 2, pp. 91123 London & New York: Academic Press.
  • Jason, A.C. (1983) A deterministic model for monophasic growth of batch cultures of bacteria. Antonie Van Leeuwenhoek 49, 513536.
  • Jeffries, T.W. (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol: Environ Biotechnol/Energ Biotechnol 17, 320326.
  • Johnston, G.C., Ehrhardt, C.W., Lorincz, A. and Carter, B.L. (1979) Regulation of cell size in the yeast Saccharomyces cerevisiae. J Bacteriol 137, 15.
  • Kennedy, A.I., Taidi, B., Dolan, J.L. and Hodgson, J.A. (1997) Optimisation of a fully defined medium for yeast fermentation studies. Food Technol Biotechnol 35, 261265.
  • Kieronczyk, A., Cachon, R., Feron, G. and Yvon, M. (2006) Addition of oxidizing or reducing agents to the reaction medium influences amino acid conversion to aroma compounds by Lactococcus lactis. J Appl Microbiol 101, 11141122.
  • Kirlin, W.G., Cai, J., Thompson, S.A., Diaz, D., Kavanagh, T.J. and Jones, D.P. (1999) Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med 27, 12081218.
  • Kuriyama, H. and Kobayashi, H. (1993) Effects of oxygen supply on yeast growth and metabolism in continuous fermentation. J Ferment Bioeng 75, 364367.
  • Kuyper, M., Winkler, A.A., Van Dijken, J.P. and Pronk, J.T. (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4, 655664.
  • Lagunas, R. (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Lett 104, 229242.
  • Laurinavichene, T.V., Chanal, A., Wu, L.-F. and Tsygankov, A.A. (2001) Effect of O2, H2 and redox potential on the activity and synthesis of hydrogenase 2 in Escherichia coli. Res Microbiol 152, 793798.
  • Lovitt, R.W., Shen, G.J. and Zeikus, J.G. (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170, 28092815.
  • Mailinger, W., Baumeister, A., Reuss, M. and Rizzi, M. (1998) Rapid and highly automated determination of adenine and pyridine nucleotides in extracts of Saccharomyces cerevisiae using a micro robotic sample preparation-HPLC system. J Biotechnol 63, 155166.
  • Malherbe, S., Fromion, V., Hilgert, N. and Sablayrolles, J.M. (2004) Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions. Biotechnol Bioeng 86, 261272.
  • De Maranon, I.M., Marechal, P.-A. and Gervais, P. (1996) Passive response of Saccharomyces cerevisiae to osmotic sifts: cell volume variations depending on the physiological state. Biochem Biophys Res Commun 227, 519523.
  • Martin, E.V. (1998) Some aspects of yeast anaerobic metabolism examined by inhibition of pyruvate decarboxylase. J Chem Educ 75, 12811283.
  • Murray, D.M. and Cahill, G. (2000) Effect of the concentration of propagation wort on yeast cell volume and fermentation performance. J Am Soc Brew Chem 58, 1420.
  • Navarro-Aviño, J.P., Prasad, R., Miralles, V.J., Benito, R.M. and Serrano, R. (1999) A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829842.
  • Nelson, D.L. and Cox, M.M. (2000) Lehninger Principles of Biochemistry, 3rd edn. New York: Worth Publisher.
  • Nevoigt, E., Pilger, R., Mast-Gerlach, E., Schmidt, U., Freihammer, S., Eschenbrenner, M., Garbe, L. and Stahl, U. (2002) Genetic engineering of brewing yeast to reduce the content of ethanol in beer. FEMS Yeast Res 2, 225232.
  • Nielsen, M.K. and Arneborg, N. (2007) The effect of citric acid and pH on growth and metabolism of anaerobic Saccharomyces cerevisiae and Zygosaccharomyces bailii cultures. Food Microbiol 24, 101105.
  • Nissen, T.L., Kielland-Brandt, M.C., Nielsen, J. and Villadsen, J. (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2, 6977.
  • Ostergaard, S., Olsson, L. and Nielsen, J. (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64, 3450.
  • Oura, E. (1977) Reaction products of yeast fermentations. Proc Biochem 12, 1935.
  • Ouvry, A., Wache, Y., Tourdot-Marechal, R., Divies, C. and Cachon, R. (2002) Effects of oxidoreduction potential combined with acetic acid, NaCl and temperature on the growth, acidification, and membrane properties of Lactobacillus plantarum. FEMS Microbiol Lett 214, 257261.
  • Park, H. and Bakalinsky, A.T. (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16, 881888.
  • Penninckx, M. (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microbiol Technol 26, 737742.
  • Penninckx, M.J. (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2, 295305.
  • Perrone, G.G., Grant, C.M. and Dawes, I.W. (2005) Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16, 218230.
  • Pham, T.H., Mauvais, G., Vergoignan, C., De Coninck, J., Cachon, R. and Feron, G. (2008) Gaseous environments modify reserve carbohydrate contents and cell survival in the brewing yeast Saccharomyces cerevisiae. Biotechnol Lett 30, 287294.
  • Poirier, I., Maréchal, P.-A., Evrard, C. and Gervais, P. (1998) Escherichia coli and Lactobacillus plantarum responses to osmotic stress. Appl Microbiol Biotechnol 50, 704709.
  • Powis, G., Briehl, M. and Oblong, J. (1995) Redox signalling and the control of cell growth and death. Pharmacol Ther 68, 149173.
  • Rigoulet, M., Aguilaniu, H., Averet, N., Bunoust, O., Camougrand, N., Grandier-Vazeille, X., Larsson, C., Pahlman, I.-L. et al. (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol Cell Biochem 256-257, 7381.
  • Riondet, C., Cachon, R., Wache, Y., Alcaraz, G. and Divies, C. (1999) Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. Eur J Biochem 262, 595599.
  • Riondet, C., Cachon, R., Wache, Y., Alcaraz, G. and Divies, C. (2000) Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J Bacteriol 182, 620626.
  • Roustan, J.-L. and Sablayrolles, J.-M. (2003) Feasibility of measuring ferricyanide reduction by yeasts to estimate their activity during alcoholic fermentation in wine-making conditions. J Biosci Bioeng 96, 434437.
  • Schafer, F.Q. and Buettner, G.R. (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30, 11911212.
  • Silva, M.J. and Wong, J.L. (1995) Electrochemical bioassay system. Redox responses of Escherichia coli cultures to environmental stresses. Bioelectrochem Bioenerg 37, 141148.
  • Silva-Graça, M., Neves, L. and Lucas, C. (2003) Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype? FEMS Yeast Res 3, 347362.
  • Sridhar, J. and Eiteman, M.A. (2001) Metabolic flux analysis of Clostridium thermosuccinogenes: effects of pH and culture redox potential. Appl Biochem Biotechnol 94, 5169.
  • Straskrabova, V., Paca, J. and Kralickova, E. (1980) Effect of aeration and carbon dioxide on cell morphology of Candida utilis. Appl Environ Microbiol 40, 855861.
  • Taherzadeh, M.J., Adler, L. and Liden, G. (2002) Strategies for enhancing fermentative production of glycerol – a review. Enzyme Microbiol Technol 31, 5366.
  • Taidi, B., Kennedy, A.I. and Hodgson, J.A. (2003) Wort substitutes and yeast nutrition. In Brewing Yeast Fermentation Performance ed . Smart, K.A. pp. 8695 USA: Blackwell Publishing.
  • Thom, S.R. and Marquis, R.E. (1984) Microbial growth modification by compressed gases and hydrostatic pressure. Appl Environ Microbiol 47, 780787.
  • Ueom, J., Kwon, S., Kim, S., Chae, Y. and Lee, K. (2003) Acquisition of heat shock tolerance by regulation of intracellular redox states. Biochim Biophys Acta (BBA) – Mol Cell Res 1642, 916.
  • Volschenk, H., Viljoen-Bloom, M., Subden, R.E. and Van Vuuren, H.J. (2001) Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18, 963970.
  • Wang, L. and Hatzimanikatis, V. (2006) Metabolic engineering under uncertainty – II: analysis of yeast metabolism. Metab Eng 8, 142159.
  • Wang, X.D., Bohlscheid, J.C. and Edwards, C.G. (2003) Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. J Appl Microbiol 94, 349359.
  • Wase, D.A.J. and Patel, Y.R. (1985) Variations in the volumes of microbial cells with change in the agitation rates of chemostat cultures. Microbiology 131, 725736.
  • Weusthuis, R.A., Pronk, J.T., Van den Broek, P.J. and Van Dijken, J.P. (1994a) Chemostat cultivation as a tool for studies on sugar transport in yeasts. Microbiol Rev 58, 616630.
  • Weusthuis, R.A., Visser, W., Pronk, J.T., Scheffers, W.A. and Van Dijken, J.P. (1994b) Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. Microbiology 140, 703715.
  • Wimpenny, J.W.T. and Necklen, D.K. (1971) The redox environment and microbial physiology. 1. The transition from anaerobiosis to aerobiosis in continuous cultures of facultative anaerobes. Biochim Biophys Acta (BBA) – Bioenergetics 253, 352359.
  • Zhu, J., Shalel-Levanon, S., Bennett, G. and San, K.-Y. (2006) Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metab Eng 8, 619627.
  • Zigha, A., Rosenfeld, E., Schmitt, P. and Duport, C. (2006) Anaerobic cells of Bacillus cereus F4430/73 respond to low oxidoreduction potential by metabolic readjustments and activation of enterotoxin expression. Arch Microbiol 185, 222233.