• 16S rDNA;
  • anaerobic digestion;
  • biogas digester;
  • denaturing gradient gel electrophoresis (DGGE);
  • microbial community;
  • pig manure


Aims:  To identify the bacterial and archaeal composition in a mesophilic biogas digester treating pig manure and to compare the consistency of two 16S rDNA-based methods to investigate the microbial structure.

Methods and results:  Sixty-nine bacterial operational taxonomic units (OTU) and 25 archaeal OTU were identified by sequencing two 16S rDNA clone libraries. Most bacterial OTU were identified as phyla of Firmicutes (47·2% of total clones), Bacteroides (35·4%) and Spirochaetes (13·2%). Methanoculleus bourgensis (29·0%), Methanosarcina barkeri (27·4%) and Methanospirillum hungatei (10·8%) were the dominant methanogens. Only 9% of bacterial and 20% of archaeal OTU matched cultured isolates at a similarity index of ≥97%. About 78% of the dominant bacterial (with abundance >3%) and 83% of archaeal OTU were recovered from the denaturing gradient gel electrophoresis (DGGE) bands of V3 regions in 16S rDNAs.

Conclusions:  In the digester, most bacterial and archaeal species were uncultured; bacteria belonging to Firmicutes, Bacteroides and Spirochaetes seem to take charge of cellulolysis, proteolysis, acidogenesis, sulfur-reducing and homoacetogenesis; the most methanogens were typical hydrogenotrophic or hydrogenotrophic/aceticlastic; DGGE profiles reflected the dominant microbiota.

Significance and Impact of the Study:  This study gave a first insight of the overall microbial structure in a rural biogas digester and also indicated DGGE was useful in displaying its dominant microbiota.