SEARCH

SEARCH BY CITATION

References

  • Appeldoorn, M.M., Vincken, J.P., Aura, A.M., Hollman, P.C. and Gruppen, H. (2009) Procyanidin dimers are metabolized by human microbiota with 2-(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone as the major metabolites. J Agric Food Chem 57, 10841092.
  • Arts, I.C., Hollman, P.C., Feskens, E.J., Bueno de Mesquita, H.B. and Kromhout, D. (2001a) Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women. Eur J Clin Nutr 55, 7681.
  • Arts, I.C., Hollman, P.C., Feskens, E.J., Bueno de Mesquita, H.B. and Kromhout, D. (2001b) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 74, 227232.
  • Arts, I.C., Jacobs, D.R. Jr, Harnack, L.J., Gross, M. and Folsom, A.R. (2001c) Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology 12, 668675.
  • Arts, I.C., Jacobs, D.R. Jr, Gross, M., Harnack, L.J. and Folsom, A.R. (2002) Dietary catechins and cancer incidence among postmenopausal women: the Iowa Women’s Health Study (United States). Cancer Causes Control 13, 373382.
  • Auger, C., Al-Awwadi, N., Bornet, A., Rouanet, J.M., Gasc, F., Cros, G. and Teissedre, P.-L. (2004) Catechins and procyanidins in Mediterranean diets. Food Res Int 37, 233245.
  • Aura, A.M., Mattila, I., Seppänen-Laakso, T., Miettinen, J., Oksman-Caldentey, K.M. and Oresis, M. (2008) Microbial metabolism of catechin stereoisomers by human faecal microbiota: comparison of targeted analysis and a non-targeted metabolomics method. Phytochem Lett 1, 1822.
  • Baba, S., Osakabe, N., Natsume, M., Muto, Y., Takizawa, T. and Terao, J. (2001a) Absorption and urinary excretion of (−)-epicatechin after administration of different levels of cocoa powder or (−)-epicatechin in rats. J Agric Food Chem 49, 60506056.
  • Baba, S., Osakabe, N., Natsume, M., Muto, Y., Takizawa, T. and Terao, J. (2001b) In vivo comparison of the bioavailability of (+)-catechin, (−)-epicatechin and their mixture in orally administered rats. J Nutr 131, 28852891.
  • Braune, A., Gütschow, M., Engst, W. and Blaut, M. (2001) Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol 67, 55585567.
  • Carlier, J.P., Bedora-Faure, M., K’Ouas, G., Alauzet, C. and Mory, F. (2010) Proposal to unify Clostridium orbiscindens Winter et al. 1991 and Eubacterium plautii (Seguin 1928) Hofstad and Aasjord 1982, with description of Flavonifractor plautii gen. nov., comb. nov., and reassignment of Bacteroides capillosus to Pseudoflavonifractor capillosus gen. nov., comb. nov. Int J Syst Evol Microbiol 60, 585590.
  • Clavel, T., Henderson, G., Alpert, C.A., Philippe, C., Rigottier-Gois, L., Dore, J. and Blaut, M. (2005) Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol 71, 60776085.
  • Del Rio, D., Calani, L., Cordero, C., Salvatore, S., Pellegrini, N. and Brighenti, F. (2010) Bioavailability and catabolism of green tea flavan-3-ols in humans. Nutrition 26, 11101116.
  • Deprez, S., Brezillon, C., Rabot, S., Philippe, C., Mila, I., Lapierre, C. and Scalbert, A. (2000) Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 130, 27332738.
  • van Duynhoven, J., Vaughan, E.E., D, M.J., R, A.K., van Velzen, E.J., Gross, G., Roger, L.C., Possemiers, S. et al. (2011) Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci USA 108 (Suppl. 1), 45314538.
  • Eggerth, A.H. (1935) The Gram-positive non-spore-bearing anaerobic bacilli of human feces. J Bacteriol 30, 277299.
  • Finegold, S.M., Sutter, V.L. and Mathisen, G.E. (1983) Normal indigenous intestinal flora. In Human intestinal microflora in health and disease ed. Hentges, D.J. pp. 331. New York: Academic Press.
  • Gonthier, M.P., Donovan, J.L., Texier, O., Felgines, C., Remesy, C. and Scalbert, A. (2003) Metabolism of dietary procyanidins in rats. Free Radic Biol Med 35, 837844.
  • Gosse, F., Guyot, S., Roussi, S., Lobstein, A., Fischer, B., Seiler, N. and Raul, F. (2005) Chemopreventive properties of apple procyanidins on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 26, 12911295.
  • Gu, L., Kelm, M.A., Hammerstone, J.F., Beecher, G., Holden, J., Haytowitz, D., Gebhardt, S. and Prior, R.L. (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134, 613617.
  • Hofmann, T., Glabasnia, A., Schwarz, B., Wisman, K.N., Gangwer, K.A. and Hagerman, A.E. (2006) Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose, castalagin, and grandinin. J Agric Food Chem 54, 95039509.
  • Jin, J.S., Zhao, Y.F., Nakamura, N., Akao, T., Kakiuchi, N., Min, B.S. and Hattori, M. (2007) Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria. Biol Pharm Bull 30, 21132119.
  • Kageyama, A., Benno, Y. and Nakase, T. (1999) Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49(Pt 4), 17251732.
  • Koga, T. and Meydani, M. (2001) Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr 73, 941948.
  • Kohri, T., Suzuki, M. and Nanjo, F. (2003) Identification of metabolites of (−)-epicatechin gallate and their metabolic fate in the rat. J Agric Food Chem 51, 55615566.
  • Larrosa, M., Luceri, C., Vivoli, E., Pagliuca, C., Lodovici, M., Moneti, G. and Dolara, P. (2009) Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models. Mol Nutr Food Res 53, 10441054.
  • Lee, M.J., Maliakal, P., Chen, L., Meng, X., Bondoc, F.Y., Prabhu, S., Lambert, G., Mohr, S. et al. (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev 11, 10251032.
  • Li, C., Lee, M.J., Sheng, S., Meng, X., Prabhu, S., Winnik, B., Huang, B., Chung, J.Y. et al. (2000) Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem Res Toxicol 13, 177184.
  • Llorach, R., Urpi-Sarda, M., Jauregui, O., Monagas, M. and Andres-Lacueva, C. (2009) An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. J Proteome Res 8, 50605068.
  • Mai, V., Katki, H.A., Harmsen, H., Gallaher, D., Schatzkin, A., Baer, D.J. and Clevidence, B. (2004) Effects of a controlled diet and black tea drinking on the fecal microflora composition and the fecal bile acid profile of human volunteers in a double-blinded randomized feeding study. J Nutr 134, 473478.
  • Manach, C., Williamson, G., Morand, C., Scalbert, A. and Remesy, C. (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81, 230S242S.
  • Meng, X., Sang, S., Zhu, N., Lu, H., Sheng, S., Lee, M.J., Ho, C.T. and Yang, C.S. (2002) Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol 15, 10421050.
  • Meselhy, M.R., Nakamura, N. and Hattori, M. (1997) Biotransformation of (−)-epicatechin 3-O-gallate by human intestinal bacteria. Chem Pharm Bull (Tokyo) 45, 888893.
  • Nomoto, H., Iigo, M., Hamada, H., Kojima, S. and Tsuda, H. (2004) Chemoprevention of colorectal cancer by grape seed proanthocyanidin is accompanied by a decrease in proliferation and increase in apoptosis. Nutr Cancer 49, 8188.
  • Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W. and Backhaus, H. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178, 56365643.
  • Piskula, M.K. and Terao, J. (1998) Accumulation of (−)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. J Nutr 128, 11721178.
  • Rechner, A.R. and Kroner, C. (2005) Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res 116, 327334.
  • Reddy, C.A. (2007) Methods for General and Molecular Microbiology. Washington: ASM Press.
  • Rios, L.Y., Gonthier, M.P., Remesy, C., Mila, I., Lapierre, C., Lazarus, S.A., Williamson, G. and Scalbert, A. (2003) Chocolate intake increases urinary excretion of polyphenol-derived phenolic acids in healthy human subjects. Am J Clin Nutr 77, 912918.
  • Roowi, S., Stalmach, A., Mullen, W., Lean, M.E., Edwards, C.A. and Crozier, A. (2010) Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. J Agric Food Chem 58, 12961304.
  • Sang, S., Lee, M.J., Yang, I., Buckley, B. and Yang, C.S. (2008) Human urinary metabolite profile of tea polyphenols analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry with data-dependent acquisition. Rapid Commun Mass Spectrom 22, 15671578.
  • Schneider, H. and Blaut, M. (2000) Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch Microbiol 173, 7175.
  • Schneider, H., Schwiertz, A., Collins, M.D. and Blaut, M. (1999) Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol 171, 8191.
  • Schoefer, L., Mohan, R., Schwiertz, A., Braune, A. and Blaut, M. (2003) Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol 69, 58495854.
  • Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C.L., Hollenberg, N.K., Sies, H., Kwik-Uribe, C. et al. (2006) (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA 103, 10241029.
  • Schwiertz, A., Le Blay, G. and Blaut, M. (2000) Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 66, 375382.
  • Serra, A., Macia, A., Romero, M.P., Valls, J., Blade, C., Arola, L. and Motilva, M.J. (2010) Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. Br J Nutr 103, 944952.
  • Simons, C.C., Hughes, L.A., Arts, I.C., Goldbohm, R.A., van den Brandt, P.A. and Weijenberg, M.P. (2009) Dietary flavonol, flavone and catechin intake and risk of colorectal cancer in the Netherlands Cohort Study. Int J Cancer 125, 29452952.
  • Song, W.O. and Chun, O.K. (2008) Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J Nutr 138, 1543S1547S.
  • Stoupi, S., Williamson, G., Drynan, J.W., Barron, D. and Clifford, M.N. (2010) A comparison of the in vitro biotransformation of (−)-epicatechin and procyanidin B2 by human faecal microbiota. Mol Nutr Food Res 54, 747759.
  • Takagaki, A. and Nanjo, F. (2010) Metabolism of (−)-epigallocatechin gallate by rat intestinal flora. J Agric Food Chem 58, 13131321.
  • Theodoratou, E., Kyle, J., Cetnarskyj, R., Farrington, S.M., Tenesa, A., Barnetson, R., Porteous, M., Dunlop, M. et al. (2007) Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 16, 684693.
  • Tsang, C., Auger, C., Mullen, W., Bornet, A., Rouanet, J.M., Crozier, A. and Teissedre, P.L. (2005) The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr 94, 170181.
  • Tzounis, X., Vulevic, J., Kuhnle, G.G., George, T., Leonczak, J., Gibson, G.R., Kwik-Uribe, C. and Spencer, J.P. (2008) Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 99, 782792.
  • Unno, T., Tamemoto, K., Yayabe, F. and Kakuda, T. (2003) Urinary excretion of 5-(3’,4’-dihydroxyphenyl)-γ-valerolactone, a ring-fission metabolite of (−)-epicatechin, in rats and its in vitro antioxidant activity. J Agric Food Chem 51, 68936898.
  • Wang, L.Q., Meselhy, M.R., Li, Y., Nakamura, N., Min, B.S., Qin, G.W. and Hattori, M. (2001) The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium. Chem Pharm Bull (Tokyo) 49, 16401643.
  • Weyant, M.J., Carothers, A.M., Dannenberg, A.J. and Bertagnolli, M.M. (2001) (+)-Catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the Min/+ mouse. Cancer Res 61, 118125.
  • Winter, J., Moore, L.H., Dowell, V.R. Jr and Bokkenheuser, V.D. (1989) C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol 55, 12031208.
  • Winter, J., Popoff, M.R., Grimont, P. and Bokkenheuser, V.D. (1991) Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Bacteriol 41, 355357.