SEARCH

SEARCH BY CITATION

References

  • Amrhein, N. and Wenker, D. (1979) Novel inhibitors of ethylene production in higher plants. Plant Cell Physiol 20, 16351642.
  • Armstrong, D., Azevedo, M., Mills, D., Bailey, B., Russell, B., Groenig, A., Halgren, A., Banowetz, G. et al. (2009) Germination-arrest factor (GAF): 3. Determination that the herbicidal activity of GAF is associated with a ninhydrin-reactive compound and counteracted by selected amino acids. Biol Control 51, 181190.
  • Babalola, O.O. (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32, 15591570.
  • Banowetz, G.M., Azevedo, M.D., Armstrong, D.J., Halgren, A.B. and Mills, D.I. (2008) Germination arrest factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 46, 380390.
  • Banowetz, G.M., Azevedo, M.D., Armstrong, D.J. and Mills, D.I. (2009) Germination-arrest factor (GAF): 2. Physical and chemical properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 50, 103110.
  • Berkowitz, D.B., Charette, B.D., Karukurichi, K.R. and McFadden, J.M. (2006) α-Vinylic amino acids: occurrence, asymmetric synthesis, and biochemical mechanisms. Tetrahedron Asymmetry 17, 869882.
  • Bolton, H., Elliott, L.F., Gurusiddaiah, S. and Fredrickson, J.K. (1989) Characterization of a toxin produced by a rhizobacterial Pseudomonas species that inhibits wheat growth. Plant Soil 114, 279287.
  • Buddenhagen, I. and Kelman, A. (1964) Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 2, 203230.
  • El-Goorani, M.A. and Hassanein, F.M. (1991) The effect of Bacillus subtilis on in vitro growth and pathogenicity of Erwinia amylovora. J Phytopathol 133, 134138.
  • Eliot, A.C. and Kirsch, J.F. (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73, 383415.
  • Elliott, L.F., Azevedo, M.D., Mueller-Warrant, G.W. and Horwath, W.R. (1998) Weed control with rhizobacteria. Soil Sci Agrochem Ecol 33, 37.
  • Emmert, E.A.B. and Handelsman, J. (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171, 19.
  • Fredrickson, J.K. and Elliott, L.F. (1985) Effects on winter wheat seedling growth by toxin-producing rhizobacteria. Plant Soil 83, 399409.
  • Gross, H. and Loper, J.E. (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26, 14081446.
  • Gross, H., Stockwell, V.O., Henkels, M.D., Nowak-Thompson, B., Loper, J.E. and Gerwick, W.H. (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14, 5363.
  • Gurusiddaiah, S., Gealy, D.R., Kennedy, A.C. and Ogg, A.G. Jr (1994) Isolation and characterization of metabolites from Pseudomonas fluorescens D7 for control of downy brome (Bromus tectorum). Weed Sci 42, 492501.
  • Haas, D. and Défago, G. (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3, 307319.
  • Handelsman, J. and Stabb, E.V. (1996) Biocontrol of soil borne plant pathogens. Plant Cell 8, 18551869.
  • Hirano, S.S. and Upper, C.D. (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae– a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Res 64, 624653.
  • Howell, C.R. and Stipanovic, R.D. (1980) Suppression of Pythium ultimum-induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 77, 286292.
  • Ishimaru, C.S., Klos, E.J. and Brubaker, R.R. (1988) Multiple antibiotic production by Erwinia herbicola. Phytopathology 78, 746750.
  • Jock, S., Volksch, B., Mansvelt, L. and Geider, K. (2002) Characterization of Bacillus strains from apple and pear trees in South Africa antagonistic to Erwinia amylovora. FEMS Microbiol Lett 211, 247252.
  • Johnson, K.B. and Stockwell, V.O. (1998) Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol 36, 227248.
  • Kimbrel, J.A., Givan, S.A., Halgren, A.B., Creason, A.L., Mills, D.I., Banowetz, G.M., Armstrong, D.J. and Chang, J.H. (2010) An improved, high-quality draft genome sequence of the germination-arrest factor producing Pseudomonas fluorescens WH6. BMC Genomics 11, 522536.
  • Langley, R.A. and Kado, C.I. (1972) Studies on Agrobacterium tumefaciens. Conditions for mutagenesis by N-methyl-N’-nitro-N-nitrosoguanidine and relationships of A. tumefaciens to crown-gall tumor induction. Mutat Res 14, 277286.
  • Lemanceau, P. and Alabouvette, C. (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and nonpathogenic Fusarium. Crop Prot 10, 279286.
  • Lindow, S.E. (1984) Integrated control and role of antibiosis in biological control of fire blight and frost injury. In Biological Control on the Phylloplane ed. Windels, C. and Lindow, W.E. pp. 83115. St Paul, MN: APS Press.
  • Loper, J.E., Henkels, M.D., Roberts, R.G., Grove, G.G., Willet, M.J. and Smith, T.J. (1991) Evaluation of streptomycin and oxytetracycline and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant Dis 75, 287290.
  • McManus, P.S. and Jones, A.L. (1994) Epidemiology and genetic analysis of streptomycin resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology 84, 627633.
  • McPhail, K.L., Armstrong, D.J., Azevedo, M.D., Banowetz, G.M. and Mills, D.I. (2010) 4-Formylaminooxyvinylglycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. J Nat Prod 73, 18531857.
  • Moller, W.J., Schroth, M.N. and Thomson, S.V. (1981) The scenario of fire blight and streptomycin resistance. Plant Dis 65, 563568.
  • Owens, L.D., Thompson, J.F., Pitcher, R.G. and Williams, T. (1972) Structure of rhizobitoxine, an antimetabolite enol-ether amino-acid from Rhizobium japonicum. J Chem Soc 12, 714.
  • Pruess, D.L., Scannell, J.P., Kellett, M., Ax, H.A., Janecek, J., Williams, T.H., Stempel, A. and Berger, J. (1974) Antimetabolites produced by microorganisms. X L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid. J Antibiot 27, 229233.
  • Raaijmakers, J.M., Vlami, M. and Souza, J.T. (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, Int J Gen Mol Microbiol 81, 537547.
  • Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Scannell, J.P., Pruess, D.L., Demny, T.C., Sello, L.H., Williams, T. and Stempel, A. (1972) Antimetabolites produced by microorganisms. V. L-2-amino-4-methoxy-trans-3-butenoic acid. J Antibiot 25, 122127.
  • Scannell, J.P., Pruess, D.L., Ax, H.A., Jacoby, A., Kellett, M. and Stempel, A. (1976) Antimetabolites produced by microorganisms. XIII. The synthesis and microbiological production of a novel amino acid, L-2-amino-4-(2-aminoethoxy)butanoic acid. J Antibiot 29, 3843.
  • Vanneste, J.L., Yu, J. and Beer, S.V. (1992) Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol 174, 27852796.
  • Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M. and Thomashow, L.S. (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40, 309348.
  • Wodzinski, R.S., Umholtz, T.E., Rundle, J.R. and Beer, S.V. (1994) Mechanisms of inhibition of Erwinia amylovora by E. herbicola in vitro and in vivo. J Appl Bacteriol 76, 2229.
  • Wright, S.A.I., Zumoff, C.H., Schneider, L. and Beer, S.V. (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67, 284292.
  • Yu, Y.-B., Adams, D.O. and Yang, S.F. (1979) 1-Aminocyclopropanecarboxylate synthase: a key enzyme in ethylene biosynthesis. Arch Biochem Biophys 198, 280286.