SEARCH

SEARCH BY CITATION

References

  • Albarran, G., Boggess, W., Rassoloy, V. and Schuler, R.H. (2010) Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone. J Phys Chem 114, 74707478.
  • Almajano, M.P., Carbo, R., Delgado, M.E. and Gordon, M.H. (2007) Effect of pH on the antimicrobial activity and oxidative stabiliy of oil-in-water emulsions containing caffeic acid. J Food Sci 72, 258263.
  • Barthelmebs, L., Divies, C. and Cavin, J.F. (2000) Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl Environ Microbiol 66, 33683375.
  • Campos, F.M., Couto, J.A. and Hogg, T.A. (2003) Influence of phenolic acids and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol 94, 167174.
  • Campos, F.M., Couto, J.A., Figuereido, A.R., Toth, I.V., Rangel, A.O.S.S. and Hogg, T.A. (2009) Cell membrane damage induced by phenolic acids on wine lactic acids bacteria. Int J Food Microbiol 135, 144151.
  • Chipley, J.R. (2005) Sodium benzoate and benzoic acid. In Antimicrobials in Food ed. Davidson, P.M., Sofos, J.N. and Branen, A.L. pp. 1248. USA: CRC Taylor and Francis.
  • Corrales, M., Han, J.H. and Tauscher, B. (2009) Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int J Food Sci Technol 44, 425433.
  • Coteau, D., Mc Cartney, A.L., Gibson, G.R., Williamson, G. and Faulds, C.B. (2001) Isolation and characterization of human colon bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90, 873881.
  • Cueva, C., Moreno-Arribas, M.V., Martinez-Alvarez, P.J., Bills, G., Vicente, M.F., Basilio, A., Lopez Rivas, C., Requena, T. et al. (2010) Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol 16, 372382.
  • Curiel, J.A., Rodriguez, H., Landete, J.M., De las Rivas, B. and Munoz, R. (2010) Ability of Lactobacillus brevis to degrade food phenolic acids. Food Chem 120, 225229.
  • Dai, J. and Mumper, R.S. (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 73137352.
  • De las Rivas, B., Rodriguez, H., Curiel, J.A., Landete, J.M. and Muñoz, R. (2009) Molecular screening of wine lactic acid bacteria degrading hyroxycinnamic acids. J Agric Food Chem 57, 490494.
  • Dlusskaya, E.A., McMullen, L.M. and Gänzle, M.G. (2011) Characterization of an extremely heat-resistant Escherichia coli obtained from a beef processing facility. J Appl Microbiol 110, 840849.
  • Ejechi, B.O. and Akpomedaye, D.E. (2005) Activity of essential oil and phenolic extracts of pepperfruit (Dennetia tripetala G. Baker; Anonaceae) against some food-borne microorganisms. Afr J Biotechnol 4, 258261.
  • Elegir, G., Kindl, A., Sadocco, P. and Orlandi, M. (2008) Development of antimicrobial cellulose packing through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 43, 8492.
  • Gänzle, M.G., Hertel, C. and Hammes, W.P. (1996) Antimicrobial activity of bacteriocin-producing cultures in meat products: modelling of the effect of pH, NaCl, and nitrite concentrations on the antimicrobial activity of sakacin P against Listeria ivanovii DSM20750. Fleischwirtschaft 76, 409412.
  • Herald, P.J. and Davidson, P.M. (1983) Antibacterial activity of selected hydroxycinnamic acids. J Food Sci 48, 13781379.
  • Landete, J.M., Curiel, J.A., Rodriguez, H., De las Rivas, B. and Muñoz, R. (2008) Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem 107, 320326.
  • Lee, H.C., Jenner, A.M., Low, C.S. and Lee, Y.K. (2006) Effect of tea phenolics and their aromatic fecal bacteria metabolites on intestinal microbiota. Res Microbiol 157, 876884.
  • Merkl, R., Hrádková, I., Filip, V. and Šmidrkal, J. (2010) Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J Food Sci 28, 275279.
  • Otto, R. and Conn, J.E. (1944) Effect of increase acidity on antiseptic efficiency. Ind Eng Chem 36, 21852187.
  • Parente, E., Brienza, C., Moles, M. and Ricciardi, A. (1995) A comparison of methods for the measurement of bacteriocin activity. J Microbiol Methods 22, 95108.
  • Phan, T.N., Nguyen, P.T., Abranches, J. and Marquis, R.E. (2002) Fluoride and organic weak acids as respiration inhibitors for oral streptococci in acidified environments. Oral Microbiol Immunol 17, 119124.
  • Ramos-Nino, M.E., Clifford, M.N. and Adams, M.R. (1996) Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes. J Appl Bacteriol 80, 303310.
  • Rastogi, N., Domadia, P., Shetty, S. and Dasgupta, D. (2008) Screening of natural phenolic compounds for potential to inhibit bacterial cell division protein FtsZ. Indian J Exp Biol 46, 783787.
  • Röcken, W. and Spicher, G. (1993) Fadenziehende Bakterien;Vorkommen, Bedeutung und Gegenmassnahmen. Getreide Mehl Brot 47, 3035.
  • Rodriguez, H., Landete, J.M., De las Rivas, B. and Munoz, R. (2008) Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem 107, 13931398.
  • Rozes, N. and Peres, C. (1998) Effects of phenolic compounds on the growth and the fatty acid composition of Lactobacillus plantarum. Appl Microbiol Biotechnol 49, 108111.
  • Schieber, A. and Aranda Saldana, M.D. (2009) Potato peels: a source of nutritionally and pharmacologically interesting compounds – a review. Food 3, 2329.
  • Sekwati-Monang, B. and Gänzle, M.G. (2011) Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int J Food Microbiol 150, 115121.
  • Stead, D. (1993) The effect of hydroxycinnamic acids on the growth of wine-spoilage lactic acid bacteria. J Appl Bacteriol 75, 135141.
  • Svensson, L., Sekwati-Monang, B., Lopes Lutz, D., Schieber, A. and Gänzle, M.G. (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorgum bicolor (L.) Moench). J Agric Food Chem 58, 92149220.
  • Taguri, T., Tanaka, T. and Kouno, I. (2006) Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol Pharm Bull 29, 22262235.
  • Tuncel, G. and Nergiz, C. (1993) Antimicrobial effect of some olive phenols in a laboratory medium. Lett Appl Microbiol 17, 300302.
  • Ulmer, H.M., Gänzle, M.G. and Voguel, R.F. (2000) Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1.460. Appl Environ Microbiol 66, 39663973.
  • Valcheva, R., Korakli, M., Onno, B., Prevost, H., Ivanova, I., Ehrmann, M.A., Dousset, X., Gänzle, M.G. et al. (2006) Lactobacillus hammesii sp. nov., isolated from French sourdough. Int J Syst Evol Microbiol 55, 763767.
  • Van Beek, S. and Priest, F.G. (2000) Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Appl Environ Microbiol 66, 53225328.
  • Wansi, J.D., Chiozen, D.D., Tcho, A.T., Toze, F.A.A., Devkota, K.P., Ndjakou, L.B. and Sewald, N. (2010) Antimicrobial and antioxidant effects of phenolic constituents from Klainedoxa gabonensis. Pharm Biol 48, 11241129.
  • Wen, A., Delaquis, P., Stanich, K. and Toivonen, P. (2003) Antilisterial activity of selected phenolic acids. Food Microbiol 20, 305311.
  • Xia, D., Wu, Z., Shi, J., Yang, Q. and Zhang, Y. (2010) Phenolic compounds from the edible seeds extract of Chinese Mei (Prunus mume Sieb, et Zucc) and their antimicrobial activity. LWT-Food Sci Technol 44, 347349.