SEARCH

SEARCH BY CITATION

References

  • Beauchamps, C. and Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44, 276287.
  • Belimov, A.A., Kunakova, A.M., Safronova, V.I., Stepanok, V.V., Yudkin, L.Y., Alekseev, Y.V. and Kozhemyakov, A.P. (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73, 99106.
  • Bric, J.M., Bostock, R.M. and Silverstone, S.E. (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57, 535538.
  • Buysse, J. and Merckx, R. (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44, 16271629.
  • Cai, L., Liu, G., Rensing, C. and Wang, G. (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9, 4.
  • Dary, M., Chamber-Pérez, M.A., Palomares, A.J. and Pajuelo, E. (2010) In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177, 323330.
  • De Souza, M.P., Huang, C.P., Chee, N. and Terry, N. (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209, 259263.
  • Di Baccio, D., Tognetti, R., Sebastiani, L. and Vitagliano, C. (2003) Responses of Populus deltoides×Populus nigra (Populus×euramericana) clone I-214 to high zinc concentrations. New Phytol 159, 443452.
  • Di Lonardo, S., Capuana, M., Arnetoli, M., Gabbrielli, R. and Gonnelli, C. (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res Int 18, 8290.
  • Dixon, P. (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14, 927930.
  • Drewniak, L., Styczek, A., Majder-Lopatka, M. and Sklodowska, A. (2008) Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut 156, 10691074.
  • Fan, H., Su, C., Wang, Y., Yao, J., Zhao, K., Wang, Y.X. and Wang, G. (2008) Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with the geological arsenic groundwater contamination in Shanyin, Datong Basin, China. J App Microbiol 105, 529539.
  • Feng, Q., Liu, W. and Xi, H.Y. (2009) Relationship between soil physiochemistry and land degradation in the lower Heihe River basin of northwestern China. Front Earth Sci China 3, 490499.
  • Gallego, S.M., Benavides, M.P. and Tomaro, M.L. (2001) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121, 151159.
  • Glick, B.R. (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21, 383393.
  • Gullner, G., Komives, T. and Rennenberg, H. (2001) Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52, 971979.
  • Gupta, D.K., Tripathi, R.D., Mishra, S., Srivastava, S., Dwivedi, S. and Rai, U.N. (2008) Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 29, 281286.
  • Huq, S.M., Joardar, J.C., Parvin, S., Correll, R. and Naidu, R. (2006) Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr 24, 305316.
  • Jankong, P., Visoottiviseth, P. and Khokiattiwong, S. (2007) Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68, 19061912.
  • Johanssona, L.H. and Borg, L.A. (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174, 331336.
  • Jordahl, J.L., Foster, L., Schnoor, J.L. and Alvarez, P.J. (1997) Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ Toxicol Chem 16, 13181321.
  • Koch, K.E., Ying, Z., Wu, Y. and Avigne, W.T. (2000) Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J Exp Bot 51, 417427.
  • Kumar, S., Tamura, K. and Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150163.
  • Liao, X.Y., Chen, T.B., Xie, H. and Liu, Y.R. (2005) Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ Int 31, 791798.
  • Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y. and Kennelley, E.D. (2001) A fern that hyperaccumulates arsenic. Nature 409, 579.
  • Ma, Y., Prasad, M.N.V., Rajkumar, M. and Freitas, H. (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29, 248258.
  • Markwell, J., Osterman, J.C. and Mitchell, J.L. (1995) Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res 46, 467472.
  • Martínez-Sánchez, J.L. (2006) Leaf and soil nitrogen and phosphorus availability in a neotropical rain forest of nutrient-rich soil. Rev Biol Trop 54, 357361.
  • Mika, A. and Lüthje, S. (2003) Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 132, 14891498.
  • Minamisawa, K. and Fukai, K. (1991) Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol 32, 19.
  • Nie, L., Shah, S., Rashid, A., Burd, G.I., Dixon, D.G. and Glick, B.R. (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40, 355361.
  • Passardi, F., Penel, C. and Dunand, C. (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9, 534540.
  • Reisner, A.H., Names, P. and Bucholtz, C. (1975) The use of Coomassie brilliant blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem 64, 509516.
  • Salt, D.E., Smith, R.D. and Raskin, I. (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49, 643668.
  • Sawada, H., Ieki, H., Oyaizu, H. and Matsumoto, S. (1993) Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43, 694702.
  • Schmedes, A. and Hølmer, G. (1989) A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. J Am Oil Chem Soc 6, 813817.
  • Schwyn, B. and Neilands, J.B. (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 4756.
  • Singh, N.K., Rai, U.N., Tewari, A. and Singh, M. (2010) Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge amended soil. Bull Environ Contam Toxicol 84, 118124.
  • Stoltz, E. and Greger, M. (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47, 271280.
  • Sun, G. (2004) Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol 198, 268271.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 48764882.
  • Tripathi, R.D., Srivastava, S., Mishra, S. and Singh, N. (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25, 158165.
  • Vamerali, T., Bandiera, M., Coletto, L., Zanetti, F., Dickinson, N.M. and Mosca, G. (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157, 887894.
  • Wagner, G.J. (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51, 173212.
  • Weeger, W., Lievremont, D., Perret, M., Lagarde, F., Hubert, J.C. and Leroy, M. (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12, 141149.
  • Wei, S.H., Zhou, Q.X., Wang, X., Zhang, K.S., Guo, G.L. and Ma, L.Q. (2005) A newly-discovered Cd-hyperaccumulator Solanum nigrum L. Chin Sci Bull 50, 3338.
  • Wei, S.H., Zhou, Q.X. and Koval, P.V. (2006) Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L and their significance to phytoremediation. Sci Total Environ 369, 441446.
  • Welbaum, G.E., Sturz, A.V., Dong, Z. and Nowak, J. (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23, 175193.
  • Wilson, K.H., Blitchington, R.B. and Greene, R.C. (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28, 19421946.
  • Wu, S.C., Peng, X.L., Cheung, K.C., Liu, S.L. and Wong, M.H. (2009) Adsorption kinetics of Pb and Cd by two plant growth promoting rhizobacteria. Bioresour Technol 100, 45594563.
  • Yang, Q., Tu, S., Wang, G., Liao, X. and Yan, X. (2011) Effectiveness of applying of arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytorem 14, 8999.