SEARCH

SEARCH BY CITATION

References

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F. Jr, Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. et al. (1977) The protein databank. A computer-based archival file for macromolecular structures. Eur J Biochem 80, 319324.
  • Bessler, C., Schmitt, J., Maurer, K.H. and Schmid, R.D. (2003) Directed evolution of a bacterial α-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci 12, 21412149.
  • Cai, H., Chen, Z.J., Du, L.X. and Lu, F.P. (2005) Expression and secretion of an acid-stable α-amylase gene in Bacillus subtilis by sacB promoter and signal peptide. Biotechnol Lett 27, 17311736.
  • Crabb, W.D. and Shetty, J.K. (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2, 252256.
  • Doi, R.H., Wong, S.L. and Kawamura, F. (1998) Potential use of Bacillus subtilis for secretion and production of foreign proteins. Trends Biotechnol 4, 232235.
  • Guex, N. and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18, 27142723.
  • Hmidet, N., Bayoudh, A., Berrin, J.G., Kanoun, S., Juge, N. and Nasri, M. (2008) Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1 Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochem 43, 499510.
  • Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. and Pease, L.R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 5159.
  • Jones, A., Lamsa, M., Frandsen, T.P., Spendler, T., Harris, P., Sloma, A., Xu, F., Nielsen, J.R. et al. (2008) Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25. J Biotechnol 134, 325333.
  • Kyte, J. (1995) Mechanism in Protein Chemistry. New York: Garland Publishing.
  • Lee, S., Oneda, H., Minoda, M., Tanaka, A. and Inouye, K. (2006) Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis α-amylases and insights into engineering-amylase variants active under acidic conditions. J Biol Chem 139, 9971005.
  • Liu, Y.H., Lu, F.P., Li, Y., Wang, J.L. and Gao, C. (2008a) Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Appl Microbiol Biotechnol 80, 795803.
  • Liu, Y.H., Lu, F.P., Li, Y., Yin, X.B., Wang, Y. and Gao, C. (2008b) Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol 78, 8594.
  • Liu, Y.H., Lu, F.P., Chen, G.Q., Snyder, C.L., Sun, J., Li, Y., Wang, J.L. and Xiao, J. (2010) High-level expression, purification and characterization of a recombinant medium-temperature a-amylase from Bacillus subtilis. Biotechnol Lett 32, 119124.
  • Liu, Y.H., Chen, G.Q., Wang, J.L., Hao, Y.J., Li, M., Li, Y., Hu, B. and Lu, F.P. (2012) Efficient expression of an alkaline pectate lyase gene from Bacillus subtilis and the characterization of the recombinant protein. Biotechnol Lett 34, 109115.
  • MacGregor, E.A. (1993) Relationships between structure and activity in the α-amylase family of starch-metabolising enzymes. Starch-Starke 7, 232237.
  • Machius, M., Declerck, N., Huber, R. and Wiegand, G. (2003) Kinetic stabilization of Bacillus licheniformis α-amylase through introduction of hydrophobic residues at the surface. J Biol Chem 278, 1154611553.
  • Nielsen, J.E. and Borchert, T.V. (2000) Protein engineering of bacterial α- amylase. Biochim Biophys Acta 1543, 253274.
  • Nielsen, J.E. and Mccammon, J.A. (2003) Calculating pKa values in enzyme active sites. Protein Sci 12, 18941901.
  • Nielsen, J.E., Beier, L., Otzen, D., Borchert, T.V., Frantzen, H.B., Andersen, K.V. and Svendsen, A. (1999) Electrostatics in the active site of an α-amylase. Eur J Biochem 264, 816824.
  • Nielsen, J.E., Borchert, T.V. and Vriend, G. (2001) The determinants of α-amylase pH-activity profiles. Protein Eng 14, 505512.
  • Peitsch, M.C. (1996) ProMod and Swiss-Model: internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24, 274279.
  • Peitsch, M.C., Wells, T.N., Stampf, D.R. and Sussman, J.L. (1995) The Swiss-3D Image collection and PDB-browser on the world-wide web. Trends Biochem Sci 20, 8284.
  • Peitsch, M.C., Herzyk, P., Wells, T.N. and Hubbard, R.E. (1996) Automated modelling of the transmembrane region of G-protein coupled receptor by Swiss-model. Receptor Channel 4, 161164.
  • Qian, M., Haser, R., Buisson, G., Duee, E. and Payan, F. (1994) The active center of a mammalian α-amylase. Structure of the complex of a pancreatic α-amylase with a carbohydrate inhibitor refined to 2.2-Å resolution. Biochemistry-US 33, 6284629427.
  • Rydberg, E.H., Li, C., Maurus, R., Overall, C.M., Brayer, G.D. and Withers, S.G. (2002) Mechanistic analyses of catalysis in human pancreatic α-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 41, 44924502.
  • Strokopytov, B., Penninga, D., Rozeboom, H.J., Kalk, K.H., Dijkhuizen, L. and Dijkstra, B.W. (1995) X-ray structure of cyclodextrin glycosyltransferase complexed with acarbose. Implications for the catalytic mechanism of glycosidases. Biochem 34, 22342240.
  • Takagi, T., Toda, H. and Isemura, T. (1971) Bacterial and mold amylases. In The Enzymes, 3rd edn ed. Boyer, P.D., pp. 235271. New York: Academic Press.
  • Uitdehaag, J.C., Mosi, R., Kalk, K.H., van der Veen, B.A., Dijkhuizen, L., Withers, S.G. and Dijkstra, B.W. (1999) X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Biol 6, 432436.
  • Wind, R.D., Uitdehaag, J.C., Buitelaar, R.M., Dijkstra, B.W. and Dijkhuizen, L. (1998) Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J Biol Chem 273, 57715779.