SEARCH

SEARCH BY CITATION

References

  • Akhurst, R.J. (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Hettrorhabditidae and Steinernematidae. J Gen Microbiol 128, 30613065.
  • Akhurst, R.J. and Dunphy, G.B. (1993) Tripartite interactions between symbiotically associated entomopathic bacteria, Nematodes and their insect hosts. In Parasites and Pathogens of Insects eds Beckage, N.E., Thompson, S.N. and Federici, B.A. pp. 123. San Diego, CA: Academic Press, Inc.
  • Anteunis, M.J.O. (1978) The cyclic dipeptides: proper model compounds in peptide research. Bull Soc Chem Belg 87, 627650.
  • Bobylev, M.M., Bobyleva, L.I. and Strobel, G.A. (1996) Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa). J Agric Food Chem 44, 39603964.
  • Cain, C.C., Dongho, L., Robert, H., Waldo, R.H. III, Henry, A.T., Casida, E.J. Jr, Wani, M.C., Wall, M.E. et al. (2003) Synergistic antimicrobial activity of metabolites produced by a nonobligate bacterial predator. Antimicrob Agents Chemother 47, 21132117.
  • Chen, G., Dunphy, G.B. and Webster, J.M. (1994) Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol Control 4, 157162.
  • Chen, G., Maxwell, P., Dunphy, G.B. and Webster, J.M. (1996) Culture conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes. Nematologica 42, 124127.
  • Clinical and Laboratory Standards Institute (CLSI) (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI documents M27-S3. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA.
  • Clinical and Laboratory Standards Institute (CLSI) (2008) Reference methods for broth dilution antifungal susceptibility tests of yeasts. CLSI documents M27-S3. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA.
  • Dal Bello, F., Clarke, C.I., Ryan, L.A.M., Ulmer, H., Schober, T.J., Ström, K., Sjögren, J., van Sinderen, D. et al. (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45, 309318.
  • Deepa, I., Mohandas, C., Makesh, K.T., Siji, J.V., Prakash, K.B.S. and Babu, B. (2010) Identification of new entomopathogenic nematodes (EPNs) based on sequences of D2-D3 expansion fragments of the 28S rRNA. J Root Crops 36, 227232.
  • Degrassi, G., Aguilar, C., Bosco, M., Zahariev, S., Pongor, S. and Ventur, V. (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secrets four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr Microbiol 45, 250254.
  • Fdhila, F., Vazquez, V., Sanchez, J.L. and Riguera, R. (2003) DD-Diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. J Nat Prod 66, 12991301.
  • Forst, S. and Nealson, K.H. (1996) Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60, 2143.
  • Forst, S., Dowds, B., Boemare, N. and Stackebrandt, E. (1997) Xenorhabdus and Photorhabdus spp. Bugs that kill bugs. Annu Rev Microbiol 51, 4772.
  • Gaugler, R. and Kaya, H.K. (1990) Entomopathogenic Nematodes in Biological Control. Boca Raton, FL, USA: CRC Press.
  • Goodrich-Blair, H. and Clarke, D.J. (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64, 260268.
  • Gualtieri, M., Aumelasm, A. and Thaler, J.O. (2009) Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J Antibiot 62, 295302.
  • Herbert, E.E. and Goodrich-Blair, H. (2007) Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol 5, 634646.
  • Holden, M.T.G., Chhabra, S.R., de Nys, R., Stead, P., Bainton, N.J., Hill, P.J., Manefield, M., Kumar, N. et al. (1999) Quorum- sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram negative bacteria. Mol Microbiol 33, 1254.
  • Houston, D.R., Synstad, B., Eijsink, V.G., Stark, M.J., Eggleston, I.M. and van Aalten, D.M. (2004) Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 47, 57135720.
  • Ji, D.J., Yi, Y.K. and Kang, G.H. (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett 239, 241248.
  • Krejcarek, G.E., Dominy, B.H. and Lawton, R.G. (1968) The interaction of reactive functional groups along peptide chains. A model for alkaloid biosynthesis. Chem Commun, 22, 14501452.
  • Lang, G., Kalvelage, T., Peters, A., Wiese, J. and Imhoff, J.F. (2008) Peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod 71, 10741077.
  • Li, J.X., Chen, G.H. and Webster, J.M. (1997) Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobacteriaceae). Can J Microbiol 43, 770773.
  • Li, Z.Y., Peng, C., Shen, Y., Miao, X., Zang, H. and Lin, H. (2008) L,L-Diketopiperazine from Alcaligenes faecalis A72 associated with South China sponge Stelletta tenuis. Biochem Syst Ecol 36, 230234.
  • Li, J., Wangb, W., Xua, S.X., Magarveyb, N.A. and McCormicka, J.K. (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci USA 108, 33603365.
  • Marfey, P. (1984) Determination of d-amino acids. II. Use of a bifunctional reagents, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 49, 591596.
  • Martins, M.B. and Carvalho, I. (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63, 99239932.
  • McInerney, B.V., Gregson, R.P., Lacey, M.J., Akhurst, R.J., Lyons, G.R., Rhodes, S.H., Smith, D.R.J. and Engelhardt, L.M. (1991a) Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54, 774784.
  • McInerney, B.V., Taylor, W.C., Lacey, M.J., Akhurst, R.J. and Gregson, R.P. (1991b) Biologically active metabolites from Xenorhabdus spp. Part 2 Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 54, 785795.
  • van der Merwe, E., Huang, D., Peterson, D., Kilian, G., Milne, P.J., Van de Venter, M. and Frost, C. (2008) The synthesis and anticancer activity of selected diketopiperazines. Peptides 29, 13051311.
  • Mohandas, C., Sheeba, M., Firoza, A.J. and Rajamma, P. (2007) Bacteria associated with Rhabditis (Oscheius) spp. (Rhabditidae: Nematoda) for the biocontrol of insect pests. Proc Nat Seminar on Achievements and Opportunities in Post harvest Management and Value Addition in Root and Tuber Crops (NSRTC – 2). 195198.
  • Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C. and Yolke, R.H. (1995) Manual of Clinical Microbiology, Vol. 6. Washington, DC: ASM.
  • Nicholson, B., Lloyd, G.K., Miller, B.R., Palladino, M.A., Kiso, Y., Hayashi, Y. and Neuteboom, S.T. (2006) NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs 17, 2531.
  • Ovchinnikov, Y.A. and Ivanov, V.T. (1975) Conformational states and biological activity of cyclic peptides. Tetrahedron 31, 21772209.
  • Paul, V.J., Frautschy, S., Fenical, W. and Nealson, K.H. (1981) Antibiotics in microbial ecology, isolation and structure assignment of several new antibacterial compounds from the insect symbiotic bacteria Xenorhabdus spp. J Chem Ecol 7, 589597.
  • Prasad, C. (1995) Bioactive cyclic dipeptides. Peptides 16, 151164.
  • Rhee, K.H. (2002) Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J Gen Appl Microbiol 48, 327331.
  • Rhee, K.H. (2003) Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J Microbiol Biotechnol 13, 984988.
  • Rhee, K.H. (2004) Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int J Antimicrob Agents 24, 423427.
  • Rollas, S., Kalyoncuoglu, N., Sur-Altiner, D. and Yegenglu, Y. (1993) 5-(4-Aminophenyl)-4-substituted 2,4-dihydro-3H-1,2,4-triazole-3-thiones: synthesis, antibacterial and antifungal activities. Pharmazie 48, 308309.
  • Rosa, S.D., Mitova, M. and Tommonaro, G. (2003) Marine bacteria associated with sponge as source of cyclic peptides. Biomol Eng 20, 311316.
  • Rudi, A., Kashman, Y., Benayahu, Y. and Schleyer, M. (1994) Amino acid derivatives from the marine sponge Jaspis digonoxea. J Nat Prod 57, 829.
  • Smigielski, A.J. and Akhurst, R.J. (1994) Megaplasmids in Xenorhabdus and Photorhabdus spp., bacterial symbionts of entomopathogenic nematodes (families Steinernematidae and Heterorhabditidae). J Invertebr Pathol 64, 214220.
  • Smith-Palmer, A., Stewart, J. and Fyfe, L. (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26, 118122.
  • Song, M.K., Hwang, I.K., Rosenthal, M.J., Harris, D.M., Yamaguchi, D.T., Yip, I. and Go, V.L.W. (2003) Anti-hyperglycemic activity of zinc plus cyclo(His-Pro) in genetically diabetic goto-kakizaki and aged rats. Exp Biol Med 228, 13381345.
  • Stierle, A.C., Cardellina, J.H. and Strobel, G.A. (1988) Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternate. Proc Natl Acad Sci USA 85, 80088011.
  • Strom, K., Sjogren, J., Broberg, A. and Schnurer, J. (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Phe-trans-4-OH-l-pro) and 3-phenyllactic acid. Appl Environ Microbiol 68, 43224327.
  • Wang, Y., Mueller, U.G. and Clardy, J. (1999) Antifungal diketopiperazines from symbiotic fungus of fungus-growing ant Cyphomyrmex minutes. J Chem Ecol 25, 935941.
  • Yan, P.S., Song, Y., Sakuno, E., Nakajima, H., Nakagawa, H. and Yabe, K. (2004) Cyclo(Lleucyl-l-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl Environ Microbiol 70, 74667473.