Supramolecular reactive sulphur nanoparticles: a novel and efficient antimicrobial agent

Authors


Correspondence

Samrat Roy Choudhury, Biological Sciences Division, Indian Statistical Institute, 203, B. T Road, Kolkata-700108, India. E-mail: samratroychoudhury@gmail.com

Summary

Antimicrobial resistance continues to be an inexorable threat for the biomedical and biochemical researchers. Despite the novel discoveries in drug designing and delivery, high-throughput screening and surveillance data render the prospects for new antimicrobial agents as bleak as ever. The advent of nanotechnology, however, strengthens pharmacology by offering effective therapeutics to treat this aforementioned problem. Several nanoparticles of the known elements have already been reported for their antimicrobial efficacy. Nanosized fabrication of elemental sulphur with suitable surface modifications offers to retrieve the use of sulphur (man's oldest known ecofriendly microbicide) as a potential antimicrobial agent. Sulphur nanoparticles (SNPs) are effective against both conventionally sulphur-resistant and sulphur-susceptible microbes (fungi and bacteria). Moreover, biocompatible polymers present on the surface of SNPs minimize toxicity during application. Here, we focus on various aspects of physicochemical features of SNPs and their biochemical interactions with microbes. The present review also illustrates the effects of SNPs on plants and animals in terms of cytotoxicity and biocompatibility.

Ancillary