SEARCH

SEARCH BY CITATION

References

  • Abram, F., Starr, E., Karatzas, K.A.G., Matlawska-Wasowska, K., Boyd, A., Wiedmann, M., Boor, K.J., Connally, D. et al. (2008a) Identification of components of the SigB regulon in L. monocytogenes that contribute to acid and salt tolerance. Appl Environ Microbiol 74, 68486858.
  • Abram, F., Su, W.-L., Wiedmann, M., Boor, K.J., Coote, P., Botting, C., Karatzas, K.A.G. and O'Byrne, C.P. (2008b) Proteomic analyses of a L. monocytogenes mutant lacking sigB identify new components of the SigB regulon and highlight a role for SigB in the utilization of glycerol. Appl Environ Microbiol 74, 594604.
  • Aronson, J.N., Borris, D.P., Doerner, J.F. and Akers, E. (1975) γ-Aminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl Microbiol 30, 489492.
  • Balazs, R., Machiyama, Y., Hammond, B.J., Julian, T. and Richter, D. (1970) The operation of the γ-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116, 445461.
  • Bartsch, K., von Johnn-Marteville, A. and Schulz, A. (1990) Molecular analysis of two genes of the E. coli gab cluster: nucleotide sequence of the glutamate:succinic semialdehyde transaminase gene (gabT) and characterization of the succinic semialdehyde dehydrogenase gene (gabD). J Bacteriol 172, 70357042.
  • Bearson, B.L., Lee, I.S. and Casey, T.A. (2009) E. coli O157 : H7 glutamate- and arginine-dependent acid-resistance systems protect against oxidative stress during extreme acid challenge. Microbiology 155, 805812.
  • Begley, M., Gahan, C.G.M. and Hill, C. (2002) Bile stress response in L. monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68, 60056012.
  • Begley, M., Cotter, P.D., Hill, C. and Ross, R.P. (2010) Glutamate decarboxylase-mediated nisin resistance in L. monocytogenes. Appl Environ Microbiol 76, 65416546.
  • Belitsky, B.R. and Sonenshein, A.L. (2002) GabR, a member of a novel protein family, regulates the utilization of γ-aminobutyrate in Bacillus subtilis. Mol Microbiol 45, 569583.
  • Berg, J.M., Tymoczko, J.L. and Stryer, L. (2007) Biochemistry, 6th edn. New York, NY: Friedman & Co.
  • Bhaganna, P., Volkers, R.J.M., Bell, A.N.W., Kluge, K., Timson, D.J., McGrath, J.W., Ruijssenaars, H.J. and Hallsworth, J.E. (2010) Hydrophobic substances induce water stress in microbial cells. Microb Biotechnol 3, 701716.
  • Blankenhorn, D., Phillips, J. and Slonczewski, J.L. (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of E. coli revealed by two-dimensional gel electrophoresis. J Bacteriol 181, 22092216.
  • Bouché, N. and Fromm, H. (2004) GABA in plants: just a metabolite? Trends Plant Sci 9, 110115.
  • Bron, P.A., Molenaar, D., de Vos, W.M. and Kleerebezem, M. (2006) DNA micro-array-based identification of bile-responsive genes in L. plantarum. J Appl Microbiol 100, 728738.
  • Brown, A.D. (1976) Microbial water stress. Bacteriol Rev 40, 803846.
  • Brown, A.D. (1990) Microbial Water Stress Physiology. Principles and Perspectives. Chichester, UK: John Wiley & Sons Ltd.
  • Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L., Dodson, R.J., Deboy, R.T. et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen P. syringae pv. tomato DC3000. PNAS, 100, 1018110186.
  • Capitani, G., Biase, D.D., Aurizi, C., Gut, H., Bossa, F. and Grutter, M.G. (2003) Crystal structure and functional analysis of E. coli glutamate decarboxylase. EMBO J 22, 40274037.
  • Carapito, R., Hatsch, D., Vorwerk, S., Petkovski, E., Jeltsch, J.M. and Phalip, V. (2008) Gene expression in F. graminearum grown on plant cell wall. Fungal Genet Biol 45, 738748.
  • de Carvalho, L.P.S., Ling, Y., Shen, C., Warren, J.D. and Rhee, K.Y. (2011) On the chemical mechanism of succinic semialdehyde dehydrogenase (GabD1) from M. tuberculosis. Arch Biochem Biophys 509, 9099.
  • Castanie-Cornet, M.-P. and Foster, J.W. (2001) E. coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147, 709715.
  • Castanie-Cornet, M.P., Penfound, T.A., Smith, D., Elliott, J.F. and Foster, J.W. (1999) Control of acid resistance in E. coli. J Bacteriol 181, 35253535.
  • Chevrot, R., Rosen, R., Haudecoeur, E., Cirou, A., Shelp, B.J., Ron, E. and Faure, D. (2006) GABA controls the level of quorum-sensing signal in A. tumefaciens. PNAS 103, 74607464.
  • Clark, S.M., Di Leo, R., Dhanoa, P.K., Van Cauwenberghe, O.R., Mullen, R.T. and Shelp, B.J. (2009) Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis γ-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot 60, 17431757.
  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K. et al. (1998) Deciphering the biology of M. tuberculosis from the complete genome sequence. Nature 393, 537544.
  • Coleman, S.T., Fang, T.K., Rovinsky, S.A., Turano, F.J. and Moye-Rowley, W.S. (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in S. cerevisiae. J Biol Chem 276, 244250.
  • Cotter, P.D., Gahan, C.G.M. and Hill, C. (2001) A glutamate decarboxylase system protects L. monocytogenes in gastric fluid. Mol Microbiol 40, 465475.
  • Cotter, P.D., Ryan, S., Gahan, C.G.M. and Hill, C. (2005) Presence of GadD1 glutamate decarboxylase in selected L. monocytogenes strains is associated with an ability to grow at low pH. Appl Environ Microbiol 71, 28322839.
  • Csonka, L.N. (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53, 121147.
  • Donnelly, M.I. and Cooper, R.A. (1981a) Succinic semialdehyde dehydrogenases of E. coli. Eur J Biochem 113, 555561.
  • Donnelly, M.I. and Cooper, R.A. (1981b) Two succinic semialdehyde dehydrogenases are induced when E. coli K-12 Is grown on γ-aminobutyrate. J Bacteriol 145, 14251427.
  • Dover, S. and Halpern, Y.S. (1972) Control of the pathway of γ-aminobutyrate breakdown in E. coli K-12. J Bacteriol 110, 165170.
  • Ferson, A.E., Wray, J.L.V. and Fisher, S.H. (1996) Expression of the B. subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol Microbiol 22, 693701.
  • Foster, J.W. (2004) E. coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2, 898907.
  • Francis, G.A., Scollard, J., Meally, A., Bolton, D.J., Gahan, C.G.M., Cotter, P.D., Hill, C. and O'Beirne, D. (2007) The glutamate decarboxylase acid resistance mechanism affects survival of L. monocytogenes LO28 in modified atmosphere-packaged foods. J Appl Microbiol 103, 23162324.
  • Fuhrer, T., Chen, L., Sauer, U. and Vitkup, D. (2007) Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in E. coli. J Bacteriol 189, 80738078.
  • Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A., Baquero, F., Berche, P., Bloecker, H. et al. (2001) Comparative genomics of Listeria species. Science 294, 849852.
  • Gobbetti, M., Cagno, R.D. and De Angelis, M. (2010) Functional microorganisms for functional food quality. Crit Rev Food Sci Nutr 50, 716727.
  • Gong, S., Ma, Z. and Foster, J.W. (2004) The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in E. coli. Mol Microbiol 54, 948961.
  • Goude, R., Renaud, S., Bonnassie, S., Bernard, T. and Blanco, C. (2004) Glutamine, glutamate, and α-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi strain 3937. Appl Environ Microbiol 70, 65356541.
  • Gralla, J.D. and Vargas, D.R. (2006) Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation. EMBO J 25, 15151521.
  • Hayakawa, K., Kimura, M., Kasaha, K., Matsumoto, K., Sansawa, H. and Yamori, Y. (2004) Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr 92, 411417.
  • Hommais, F., Krin, E., Coppee, J., Lacroix, C., Yeramian, E., Danchin, A. and Bertin, P. (2004) GadE (YhiE): a novel activator involved in the response to acid environment in E. coli. Microbiology 150, 6172.
  • Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M. and Sansawa, H. (2003) Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr 57, 490495.
  • Jakoby, W.B. and Scott, E.M. (1959) Aldehyde oxidation. III. Succinic semialdehyde dehydrogenase. J Biol Chem 234, 937940.
  • Jung, I.L. and Kim, I.G. (2003) Polyamines and glutamate decarboxylase-based acid resistance in E. coli. J Biol Chem 278, 2284622852.
  • Jydegaard-Axelsen, A.M., Hoiby, P.E., Holmstrom, K., Russell, N. and Knochel, S. (2004) CO2 – and anaerobiosis-induced changes in physiology and gene expression of different L. monocytogenes strains. Appl Environ Microbiol 70, 41114117.
  • Karatzas, K.A.G., Valdramidis, V.P. and Wells-Bennik, M.H.J. (2005) Contingency locus in ctsR of L. monocytogenes Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl Environ Microbiol 71, 83908396.
  • Karatzas, K.A.G., Zervos, A., Tassou, C.C., Mallidis, C.G. and Humphrey, T.J. (2007) Piezotolerant small-colony variants with increased thermotolerance, antibiotic susceptibility, and low invasiveness in a clonal Staphylococcus aureus population. Appl Environ Microbiol 73, 18731881.
  • Karatzas, K.A.G., Hocking, P.M., Jørgensen, F., Mattick, K., Leach, S. and Humphrey, T.J. (2008) Effects of repeated cycles of acid challenge and growth on the phenotype and virulence of S. enterica. J Appl Microbiol 105, 16401648.
  • Karatzas, K.A.G., Brennan, O., Heavin, S., Morrissey, J. and O'Byrne, C.P. (2010) Intracellular accumulation of high levels of γ-aminobutyrate by L. monocytogenes 10403S in response to low pH: uncoupling of γ-aminobutyrate synthesis from efflux in a chemically defined medium. Appl Environ Microbiol 76, 35293537.
  • Karatzas, K.A.G., Suur, L. and O'Byrne, C.P. (2012) Characterisation of the intracellular-glutamate decarboxylase system (GADi): analysis of its function, transcription and role in the acid resistance of various strains of L. monocytogenes. Appl Environ Microbiol 78, 35713579.
  • Kezmarsky, N.D., Xu, H., Graham, D.E. and White, R.H. (2005) Identification and characterization of an L-tyrosine decarboxylase in Methanocaldococcus jannaschii. Biochim Biophys Acta 1722, 175182.
  • Krastel, K., Senadheera, D.B., Mair, R., Downey, J.S., Goodman, S.D. and Cvitkovitch, D.G. (2010) Characterization of a glutamate transporter operon, glnQHMP, in Streptococcus mutans and its role in acid tolerance. J Bacteriol 192, 984993.
  • Kurihara, S., Kato, K., Asada, K., Kumagai, H. and Suzuki, H. (2010) A putrescine-inducible pathway comprising PuuE-YneI in which γ-aminobutyrate is degraded into succinate in E. coli K-12. J Bacteriol 192, 45824591.
  • Lei, G.-S., Syu, W.-J., Liang, P.-H., Chak, K.-F., Hu, W. and Hu, S.-T. (2011) Repression of btuB gene transcription in E. coli by the GadX protein. BMC Microbiol 11, 33.
  • Maras, B., Sweeney, G., Barra, D., Bossa, F. and John, R.A. (1992) The amino acid sequence of glutamate decarboxylase from E. coli. Eur J Biochem 204, 9398.
  • Measures, J.C. (1975) Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257, 398400.
  • Metzer, E., Levitz, R. and Halpern, Y.S. (1979) Isolation and properties of E. coli K-12 mutants impaired in the utilization of γ-aminobutyrate. J Bacteriol 137, 11111118.
  • Metzner, M., Germer, J. and Hengge, R. (2004) Multiple stress signal integration in the regulation of the complex σS-dependent csiD-ygaF-gabDTP operon in E. coli. Mol Microbiol 51, 799811.
  • Nomura, M., Kobayashi, M. and Okamoto, T. (2002) Rapid PCR-based method which can determine both phenotype and genotype of Lactococcus lactis subspecies. Appl Environ Microbiol 68, 22092213.
  • O'Byrne, C.P. and Karatzas, K.A.G. (2008) The role of SigB in the stress adaptations of L. monocytogenes: overlaps between stress adaptation and virulence. In Adv Appl Microbiol eds Allen, S., Laskin, I. and Geoffrey, M.G. 65, pp. 115140. New York: Academic Press.
  • Padmanabhan, R. and Tchen, T.T. (1969) Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudomonas species. J Bacteriol 100, 398402.
  • Petroff, O.A.C. (2002) Book Review: GABA and glutamate in the human brain. Neuroscientist 8, 562573.
  • Prell, J.R., Boesten, B., Poole, P. and Priefer, U.B. (2002) The Rhizobium leguminosarum bv. viciae VF39 γ-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148, 615623.
  • Richard, H. and Foster, J.W. (2007) Sodium regulates E. coli acid resistance, and influences GadX- and GadW-dependent activation of gadE. Microbiology 153, 31543161.
  • Roop, R.M., Gee, J.M., Robertson, G.T., Richardson, J.M., Ng, W.L. and Winkler, M.E. (2003) Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 57, 5776.
  • Rutberg, B. and Hoch, J.A. (1970) Citric acid cycle: gene-enzyme relationships in Bacillus subtilis. J Bacteriol 104, 826833.
  • Satorhelyi, P. (2005) Microarray-analyse der pH-stressantwort von L. monocytogenes und Corynebacterium glutamicum. PhD Thesis, Technische Universität München, München.
  • Sayed, A., Odom, C. and Foster, J. (2007) The E. coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology 153, 25842592.
  • Schneider, B.L., Ruback, S., Kiupakis, A.K., Kasbarian, H., Pybus, C. and Reitzer, L. (2002) The E. coli gabDTPC operon: specific γ-aminobutyrate catabolism and nonspecific induction. J Bacteriol 184, 69766986.
  • Shelp, B.J., Bown, A.W. and McLean, M.D. (1999) Metabolism and functions of γ-aminobutyric acid. Trends Plant Sci 4, 446452.
  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C.G., Coda, R. and Gobbetti, M. (2007) Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of italian cheeses. Appl Environ Microbiol 73, 72837290.
  • Smith, D.K., Kassam, T., Singh, B. and Elliott, J.F. (1992) E. coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174, 58205826.
  • Solomon, P. and Oliver, R. (2002) Evidence that γ-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta 214, 414420.
  • Stancik, L.M., Stancik, D.M., Schmidt, B., Barnhart, D.M., Yoncheva, Y.N. and Slonczewski, J.L. (2002) pH-Dependent expression of periplasmic proteins and amino acid catabolism in E. coli. J Bacteriol 184, 42464258.
  • Storz, G. and Hengge, R. (2000) Bacterial Stress Responses. Washington, DC: ASM Press.
  • Su, M., Schlicht, S. and Ganzle, M. (2011) Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb Cell Fact 10, S8.
  • Tian, J., Bryk, R., Itoh, M., Suematsu, M. and Nathan, C. (2005a) Variant tricarboxylic acid cycle in M. tuberculosis: identification of α-ketoglutarate decarboxylase. PNAS 102, 1067010675.
  • Tian, J., Bryk, R., Shi, S., Erdjument-Bromage, H., Tempst, P. and Nathan, C. (2005b) M. tuberculosis appears to lack α-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57, 859868.
  • Tramonti, A., Visca, P., De Canio, M., Falconi, M. and De Biase, D. (2002) Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the E. coli glutamic acid decarboxylase system. J Bacteriol 184, 26032613.
  • Tramonti, A., De Canio, M., Delany, I., Scarlato, V. and De Biase, D. (2006) Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in E. coli. J Bacteriol 188, 81188127.
  • Tucker, D.L., Tucker, N. and Conway, T. (2002) Gene expression profiling of the pH response in E. coli. J Bacteriol 184, 65516558.
  • Tucker, D., Tucker, N., Ma, Z., Foster, J., Miranda, R., Cohen, P. and Conway, T. (2003) Genes of the GadX-GadW regulon in E. coli. J Bacteriol 185, 31903201.
  • Ventura, M., Turroni, F., Zomer, A., Foroni, E., Giubellini, V., Bottacini, F., Canchaya, C., Claesson, M.J. et al. (2009) The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 5, e1000785.
  • Waagepetersen, H.S., Sonnewald, U. and Schousboe, A. (1999) The GABA paradox. J Neurochem 73, 13351342.
  • Waterman, S.R. and Small, P.L.C. (2003a) The glutamate-dependent acid resistance system of E. coli and Sflexneri is inhibited in vitro by L-trans-pyrrolidine-2,4-dicarboxylic acid. FEMS Microbiol Lett 224, 119125.
  • Waterman, S.R. and Small, P.L.C. (2003b) Transcriptional expression of E. coli glutamate-dependent acid resistance genes gadA and gadBC in an hns rpoS mutant. J Bacteriol 185, 46444647.
  • Weber, H., Polen, T., Heuveling, J., Wendisch, V. and Hengge, R. (2005) Genome-wide analysis of the general stress response network in E. coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187, 15911603.
  • Welsh, D.T. (2000) Ecological significance of compatible solute accumulation bu microorganisms from single cells to global climate. FEMS Microbiol Rev 24, 263290.
  • Wemekamp-Kamphuis, H.H., Wouters, J.A., de Leeuw, P.P.L.A., Hain, T., Chakraborty, T. and Abee, T. (2004) Identification of sigma factor σB-controlled genes and their impact on acid stress, High Hydrostatic Pressure, and freeze survival in L. monocytogenes EGD-e. Appl Environ Microbiol 70, 34573466.
  • WHO Campylobacter (2012) Fact sheet No 255 – October 2011. [Online] Available at: http://www.who.int/mediacentre/factsheets/fs255/en/index.html. [Accessed 08 July 2012].
  • Wood, J.M. (2011) Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65, 215238.
  • Zaboura, M. and Halpern, Y.S. (1978) Regulation of γ-aminobutyric acid degradation in E. coli by nitrogen metabolism enzymes. J Bacteriol 133, 447451.
  • Zhu, L., Peng, Q., Song, F., Jiang, Y., Sun, C., Zhang, J. and Huang, D. (2010) Structure and regulation of the gab gene cluster, involved in the γ-aminobutyric acid shunt, are controlled by a σ54 factor in Bacillus thuringiensis. J Bacteriol 192, 346355.