• Cadez, I.V., Gaffney, S. & Smyth, P. (2000) A general probabilistic framework for clustering individuals and objects. Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ed. by R.Ramakrishnan and S.Stolfo), pp. 140149. ACM Press, New York.
  • Duda, R.O., Hart, P.E. & Stork, D.G. (2000) Pattern classification, 2nd edn. John Wiley & Sons, New York.
  • Everitt, B.S. & Hand, D.J. (1981) Finite mixture distributions. Chapman & Hall, London.
  • Gagné, S.A. & Proulx, R. (2008) Accurate delineation of biogeographical regions depends on the use of an appropriate distance measure. Journal of Biogeography, doi: DOI: 10.1111/j.1365-2699.2008.01990.x.
  • Garey, M.R. & Johnson, D.S. (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company, New York.
  • Hand, D., Mannila, H. & Smyth, P. (2001) Principles of data mining. MIT Press, Cambridge, MA.
  • Heikinheimo, H., Fortelius, M., Eronen, J. & Mannila, H. (2007) Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. Journal of Biogeography, 34, 10531064.
  • Legendre, P. & Legendre, L. (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam.
  • McLachlan, G. & Peel, D. (2000) Finite mixture models. John Wiley & Sons, New York.
  • Monserud, R.A. & Leemans, R. (1992) The comparison of global vegetation maps. Ecological Modelling, 62, 275296.
  • Motwani, R. & Raghavan, P. (1995) Randomized algorithms. Cambridge University Press, Cambridge.
  • Theodoridis, S. & Koutroumbas, K. (2003) Pattern recognition, 2nd edn. Elsevier Academic Press, New York.