Get access

Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models


*Correspondence: Samuel D. Veloz, Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA. E-mail:


Aim  Environmental niche models that utilize presence-only data have been increasingly employed to model species distributions and test ecological and evolutionary predictions. The ideal method for evaluating the accuracy of a niche model is to train a model with one dataset and then test model predictions against an independent dataset. However, a truly independent dataset is often not available, and instead random subsets of the total data are used for ‘training’ and ‘testing’ purposes. The goal of this study was to determine how spatially autocorrelated sampling affects measures of niche model accuracy when using subsets of a larger dataset for accuracy evaluation.

Location  The distribution of Centaurea maculosa (spotted knapweed; Asteraceae) was modelled in six states in the western United States: California, Oregon, Washington, Idaho, Wyoming and Montana.

Methods  Two types of niche modelling algorithms – the genetic algorithm for rule-set prediction (GARP) and maximum entropy modelling (as implemented with Maxent) – were used to model the potential distribution of C. maculosa across the region. The effect of spatially autocorrelated sampling was examined by applying a spatial filter to the presence-only data (to reduce autocorrelation) and then comparing predictions made using the spatial filter with those using a random subset of the data, equal in sample size to the filtered data.

Results  The accuracy of predictions from both algorithms was sensitive to the spatial autocorrelation of sampling effort in the occurrence data. Spatial filtering led to lower values of the area under the receiver operating characteristic curve plot but higher similarity statistic (I) values when compared with predictions from models built with random subsets of the total data, meaning that spatial autocorrelation of sampling effort between training and test data led to inflated measures of accuracy.

Main conclusions  The findings indicate that care should be taken when interpreting the results from presence-only niche models when training and test data have been randomly partitioned but occurrence data were non-randomly sampled (in a spatially autocorrelated manner). The higher accuracies obtained without the spatial filter are a result of spatial autocorrelation of sampling effort between training and test data inflating measures of prediction accuracy. If independently surveyed data for testing predictions are unavailable, then it may be necessary to explicitly account for the spatial autocorrelation of sampling effort between randomly partitioned training and test subsets when evaluating niche model predictions.