Get access

Biogeographical contingency and the evolution of tropical anchovies (genus Cetengraulis) from temperate anchovies (genus Engraulis)


Correspondence: Stewart Grant, Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.


Aim  Similar regimes of selection in different geographical settings can deterministically produce similar adaptive morphologies. We tested the hypothesis that the evolutionary trajectories of fish in upwelling zones can be altered by biogeographic contingencies in the biological and physical environment.

Location  Eastern Pacific and western Atlantic oceans.

Methods  We estimated phylogenetic relationships among eastern Pacific temperate anchovies (genus Engraulis) and tropical anchovies (genus Cetengraulis) with neighbour-joining and Bayesian tree analysis of a 521-bp segment of mitochondrial DNA cytochrome b. Available sequences for five additional engraulid taxa were included to establish polarity of the tree. Bayesian estimates (BEAST) of time to most recent common ancestor (TMRCA) for the nodes in the phylogeny were calibrated with divergence between Cetengraulis edentulus and Cetengraulis mysticetus precipitated by the rise of the Panama Isthmus 2.8–3.2 Ma.

Results  Neighbour-joining and Bayesian trees indicate that South American Engraulis anchoita (Argentina) and Engraulis ringens (Chile) together are basal sister taxa to the California anchovy (Engraulis mordax) and Old World anchovies (Engraulis japonicas, Engraulis australis, Engraulis capensis and Engraulis encrasicolus). The two tropical species of Cetengraulis are sister-taxa to Californian E. mordax, even though their phenotypes and ecologies differ markedly. A relaxed molecular clock indicates a TMRCA between Californian E. mordax and Cetengraulis at about 4.2 Ma (3.0–6.3 Ma 95% highest probability density).

Main conclusions  The TMRCA between the California anchovy, E. mordax, and tropical Cetengraulis coincides with the formation of the Gulf of California, which provided opportunities for allopatric isolation during climate oscillations. Mid-Pliocene warming (3.1–2.9 Ma) may have trapped ancestors of Cetengraulis in the Gulf of California, where they evolved digestive tract morphologies to exploit inshore tropical habitats with low plankton productivities. While populations of several other temperate fishes have become isolated in the Gulf of California, few of these derived species show strong adaptive shifts from temperate sister taxa or range expansions into the tropical provinces of the western Atlantic and eastern Pacific.