SEARCH

SEARCH BY CITATION

Keywords:

  • Climate;
  • dendrochronology;
  • drought;
  • establishment;
  • Great Plains;
  • Pinus ponderosa;
  • ponderosa pine;
  • USA;
  • woodland expansion

Abstract

Aim  Woody plant expansion and infilling in grasslands and savannas are occurring across a broad range of ecosystems around the globe and are commonly attributed to fire suppression, livestock grazing, nutrient enrichment and/or climate variability. In the western Great Plains, ponderosa pine (Pinus ponderosa) woodlands are expanding across broad geographical and environmental gradients. The objective of this study was to reconstruct the establishment of ponderosa pine in woodlands in the west-central Great Plains and to identify whether it was mediated by climate variability.

Location  Our study took place in a 400-km wide region from the base of the Front Range Mountains (c. 105° W) to the central Great Plains (c. 100° W) and from Nebraska (43° N) to northern New Mexico (36° N), USA.

Methods  Dates for establishment of ponderosa pine were reconstructed with tree rings in 11 woodland sites distributed across the longitudinal and latitudinal gradients of the study area. Temporal trends in decadal pine establishment were compared with summer Palmer Drought Severity Index (PDSI). Annual trends in pine establishment from 1985 to 2005 were compared with seasonal PDSI, temperature and moisture availability.

Results  Establishment of ponderosa pine occurred in the study area in all but one decade (1770s) between the 1750s and the early 2000s, with over 35% of establishment in the region occurring after 1980. Pine establishment was highly variable among sites. Across the region, decadal pine establishment was persistently low from 1940 to 1960, when PDSI was below average. Annual pine establishment from 1985 to 2005 was positively correlated with summer PDSI and inversely correlated with minimum spring temperatures.

Main conclusions  Most ponderosa pine woodlands pre-date widespread Euro-American settlement of the region around c. ad 1860 and currently have stable tree populations. High variability in the timing of establishment of pine among sites highlights the multiplicity of factors that can drive woodland dynamics, including land use, fire history, CO2 enrichment, tree population dynamics and climate. Since the 1840s, the influence of climate was most notable across the study area during the mid-20th century, when the establishment of pine was suppressed by two significant droughts. The past sensitivity of establishment of ponderosa pine to drought suggests that woodland expansion will be negatively affected by predicted increases in temperature and drought in the Great Plains.