SEARCH

SEARCH BY CITATION

Keywords:

  • Biogeography;
  • gastropods;
  • Ilyanassa obsoleta;
  • intertidal;
  • introduction vector;
  • invasion history;
  • Littorina saxatilis;
  • North America;
  • parasite;
  • prevalence

Abstract

Aim  To use a comparative approach to understand parasite demographic patterns in native versus introduced populations, evaluating the potential roles of host invasion history and parasite life history.

Location  North American east and west coasts with a focus on San Francisco Bay (SFB).

Methods  Species richness and prevalence of trematode parasites were examined in the native and introduced ranges of two gastropod host species, Ilyanassa obsoleta and Littorina saxatilis. We divided the native range into the putative source area for introduction and areas to the north and south; we also sampled the overlapping introduced range in SFB. We dissected 14,781 snails from 103 populations and recorded the prevalence and identity of trematode parasites. We compared trematode species richness and prevalence across the hosts’ introduced and native ranges, and evaluated the influence of host availability on observed patterns.

Results  Relative to the native range, both I. obsoleta and L. saxatilis have escaped (lost) parasites in SFB, and L. saxatilis demonstrated a greater reduction of trematode diversity and infection prevalence than I. obsoleta. This was not due to sampling inequalities between the hosts. Instead, rarefaction curves suggested complete capture of trematode species in native source and SFB subregions, except for L. saxatilis in SFB, where infection was extremely rare. For I. obsoleta, infection prevalence of trematodes using fish definitive hosts was significantly lower in SFB compared to the native range, unlike those using bird hosts. Host availability partly explained the presence of introduced trematodes in SFB.

Main conclusions  Differential losses of parasite richness and prevalence for the two gastropod host species in their introduced range is probably the result of several mechanistic factors: time since introduction, propagule pressure, vector of introduction, and host availability. Moreover, the recent occurrence of L. saxatilis’ invasion and its active introduction vector suggest that its parasite diversity and distribution will probably increase over time. Our study suggests that host invasion history and parasite life history play key roles in the extent and diversity of trematodes transferred to introduced populations. Our results also provide vital information for understanding community-level influences of parasite introductions, as well as for disease ecology in general.