SEARCH

SEARCH BY CITATION

Keywords:

  • die-back of wetland plants;
  • microelectrodes;
  • oxygen;
  • seagrass die-off;
  • sediment;
  • sulphide;
  • Thalassia

Summary

  • 1
    Oxygen and sulphide dynamics were examined, using microelectrode techniques, in meristems and rhizomes of the seagrass Thalassia testudinum at three different sites in Florida Bay, and in the laboratory, to evaluate the potential role of internal oxygen variability and sulphide invasion in episodes of sudden die-off. The sites differed with respect to shoot density and sediment composition, with an active die-off occurring at only one of the sites.
  • 2
    Meristematic oxygen content followed similar diel patterns at all sites with high oxygen content during the day and hyposaturation relative to the water column during the night. Minimum meristematic oxygen content was recorded around sunrise and varied among sites, with values close to zero at the die-off site.
  • 3
    Gaseous sulphide was detected within the sediment at all sites but at different concentrations among sites and within the die-off site. Spontaneous invasion of sulphide into Thalassia rhizomes was recorded at low internal oxygen partial pressure during darkness at the die-off site.
  • 4
    A laboratory experiment showed that the internal oxygen dynamics depended on light availability, and hence plant photosynthesis, and on the oxygen content of the water column controlling passive oxygen diffusion from water column to leaves and below-ground tissues in the dark.
  • 5
    Sulphide invasion only occurred at low internal oxygen content, and the rate of invasion was highly dependent on the oxygen supply to roots and rhizomes. Sulphide was slowly depleted from the tissues when high oxygen partial pressures were re-established through leaf photosynthesis. Coexistence of sulphide and oxygen in the tissues and the slow rate of sulphide depletion suggest that sulphide reoxidation is not biologically mediated within the tissues of Thalassia.
  • 6
    Our results support the hypothesis that internal oxygen stress, caused by low water column oxygen content or poor plant performance governed by other environmental factors, allows invasion of sulphide and that the internal plant oxygen and sulphide dynamics potentially are key factors in the episodes of sudden die-off in beds of Thalassia testudinum. Root anoxia followed by sulphide invasion may be a more general mechanism determining the growth and survival of other rooted plants in sulphate-rich aquatic environments.